matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVolumen eines Tetraeders
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Volumen eines Tetraeders
Volumen eines Tetraeders < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen eines Tetraeders: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Do 13.05.2010
Autor: kushkush

Aufgabe
Das Dreieck ABC bildet die Grundfläche eines Tetraeders ABCD. Der Punkt D liegt auf der Geraden h, die senkrecht zur Grundfläche des Tetraeders steht und durch den Punkt C geht. Bestimme D, wenn die y-Koordinate und die z-Koordinate von D gleich gross sein sollen. Bestimme das Volumen des Tetraeders.

D habe ich bestimmt das ist (11/-3/-3); nun würde ich gerne das Volumen berechnen, und das mit dem Spatprodukt.


also mache ich die 3 Vektoren [mm] \overrightarrow{AB}, \overrightarrow{AC} [/mm] und [mm] \overrightarrow{AD}, [/mm] daraus erhalte ich dann die Matrix:

[mm] \pmat{ 4 & 4 &10 \\ 4 & -2 & -5\\ 2 & -5 & -5 } [/mm]

und wenn ich dann die Determinante berechne erhalte ich 420. mit [mm] \frac{1}{6} [/mm] verrechnet dann 70, was aber falsch ist.

Wo liegt mein Fehler?



Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Volumen eines Tetraeders: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Do 13.05.2010
Autor: Tyskie84

Hallo,

> Das Dreieck ABC bildet die Grundfläche eines Tetraeders
> ABCD. Der Punkt D liegt auf der Geraden h, die senkrecht
> zur Grundfläche des Tetraeders steht und durch den Punkt C
> geht. Bestimme D, wenn die y-Koordinate und die
> z-Koordinate von D gleich gross sein sollen. Bestimme das
> Volumen des Tetraeders.
>  D habe ich bestimmt das ist (11/-3/-3); nun würde ich
> gerne das Volumen berechnen, und das mit dem Spatprodukt.
>

Dazu kann ich leider nichts sagen da ich die genaue Aufgabenstellung und deren Angaben nicht vor mir habe;)

>

> also mache ich die 3 Vektoren [mm]\overrightarrow{AB}, \overrightarrow{AC}[/mm]
> und [mm]\overrightarrow{AD},[/mm] daraus erhalte ich dann die
> Matrix:
>


> [mm]\pmat{ 4 & 4 &10 \\ 4 & -2 & -5\\ 2 & -5 & -5 }[/mm]
>  

[ok]


> und wenn ich dann die Determinante berechne erhalte ich
> 420. mit [mm]\frac{1}{6}[/mm] verrechnet dann 70, was aber falsch
> ist.
>

[notok] Berechne nochmal die Determinante! Soll zufällig ein Volumen von V=30 herauskommen, falls du die Lösungen vor dir hast?

> Wo liegt mein Fehler?
>
>
>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.

[hut] Gruß


Bezug
                
Bezug
Volumen eines Tetraeders: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Do 13.05.2010
Autor: kushkush

Aufgabe
6. Gegeben sind die Punkte A(1/2/-2) und B(5/6/0) sowie die Gerade g: [mm] \overrightarrow{r} [/mm] = [mm] \vektor{9\\-2\\9} [/mm] + [mm] t\vektor{2\\-1\\3} [/mm]

a) [mm] \overline{AB} [/mm] ist Basis eines gleichschenkligen Dreiecks ABC mit Spitze C auf g. Bestimme C. Falls die Berechnung von C nicht gelingt, kann mit C(5/0/3) weiter gearbeitet werden.

b)
Das Dreieck ABC bildet die Grundfläche eines Tetraeders ABCD. Der Punkt D liegt auf der Geraden h, die senkrecht zur Grundfläche des Tetraeders steht und durch den Punkt C geht. Bestimme D, wenn die y-Koordinate und die z-Koordinate von D gleich gross sein sollen. Bestimme das Volumen des Tetraeders.

hallo, laut Lösung sollte $V=54$ herauskommen.... hab oben nochmal die gesamte Aufgabe gepostet, mein C und D stimmen aber laut Lösung!



danke!

Bezug
                        
Bezug
Volumen eines Tetraeders: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Do 13.05.2010
Autor: Tyskie84

Hallo,

AD stimmt bei dir nicht. [mm] AD=\vektor{10 \\ -5 \\ -1}. [/mm]

Mit welchem C hast du gerechnet?

[hut] Gruß

Bezug
                                
Bezug
Volumen eines Tetraeders: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Do 13.05.2010
Autor: kushkush

ich habe übers Skalarprodukt C=(5/0/3) errechnet, was dasselbe wie die "Notfalllösung" falls man es nicht errechnen kann zu sein scheint. Auch mit dem richtigen AD erhalte ich nicht 54 sondern -46...



danke

Bezug
                                        
Bezug
Volumen eines Tetraeders: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Do 13.05.2010
Autor: Tyskie84

Hallo,

eins hab ich auch noch übersehen:

[mm] AB=\vektor{4 \\ -2 \\ \red{+5} } [/mm]

Nun sollte alles stimmen und als Determnate kommt 324 heraus und somit V=54.

[hut] Gruß

Bezug
                                                
Bezug
Volumen eines Tetraeders: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Do 13.05.2010
Autor: kushkush

Danke!!!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]