matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Volumen eines Oktaeder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Volumen eines Oktaeder
Volumen eines Oktaeder < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen eines Oktaeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Mi 28.01.2009
Autor: zitrone

Hallo,

ich hab eine Aufgabe bekommen, in der es darum geht, dass ich das Volumen einer Doppelpyramide (mit 8 gleichseitigen Dreiecken als Seitenflächen (Oktaeder)) berechnen muss, wenn die Seitenkante 4 cm beträgt. Etwas berechnet habe ich schon, nur bin ich mir nicht so ganz sicher, ob ich auch die richtige Höhe herausgefunden hab. Also hier erst einmal meine Rechnung:

Pyramide : V= [mm] \bruch{1}{3}*G*h [/mm]

(Berechne erst eine der 2 Pyramiden)
gleichschänkliges Dreieck( Höhe berechnen)(Pythagoras):

[mm] h^{2}= a^{2}-(\bruch{a}{2})^{2} [/mm]

[mm] h^{2}= 4^{2}- (\bruch{4}{2})^{2} [/mm] | [mm] \wurzel{} [/mm]
h    = 3,46

Einsetzten:
V= [mm] \bruch{1}{3}*4cm*4cm*3,46cm [/mm]
V= 18,45 cm³

18,45cm³*2= 36,90 cm³


Könnte mir bitte jemand ob das richtig ist?

lg zitrone

        
Bezug
Volumen eines Oktaeder: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mi 28.01.2009
Autor: Lati

Hi Zitrone,

> Hallo,
>  
> ich hab eine Aufgabe bekommen, in der es darum geht, dass
> ich das Volumen einer Doppelpyramide (mit 8 gleichseitigen
> Dreiecken als Seitenflächen (Oktaeder)) berechnen muss,
> wenn die Seitenkante 4 cm beträgt. Etwas berechnet habe ich
> schon, nur bin ich mir nicht so ganz sicher, ob ich auch
> die richtige Höhe herausgefunden hab. Also hier erst einmal
> meine Rechnung:
>  
> Pyramide : V= [mm]\bruch{1}{3}*G*h[/mm]
>  
> (Berechne erst eine der 2 Pyramiden)
>  gleichschänkliges Dreieck( Höhe berechnen)(Pythagoras):
>  
> [mm]h^{2}= a^{2}-(\bruch{a}{2})^{2}[/mm]
>  
> [mm]h^{2}= 4^{2}- (\bruch{4}{2})^{2}[/mm] | [mm]\wurzel{}[/mm]
>  h    = 3,46

Beachte:  Dies ist nicht die Höhe der Pyramide sondern nur die Höhe eines der gleichschenkligen Dreiecke.
Um auf die Höhe der Pyramide zu kommen musst du jetzt nochmal Pythagoras machen, indem du die 3,46 cm Hypo nimmst und als andere Seite wieder a/2.
Dann kommst du auf die Höhe der Pyramide.
Kannst du das nachvollziehen?

> Einsetzten:
> V= [mm]\bruch{1}{3}*4cm*4cm*3,46cm[/mm]
>  V= 18,45 cm³
>  
> 18,45cm³*2= 36,90 cm³
>  

>Die Rechnung stimmt aber du hast natürlich die falsche Höhe eingesetzt...

> Könnte mir bitte jemand ob das richtig ist?
>  
> lg zitrone

Grüße

Lati

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]