Volumen eines Holzstab < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | Ein Holzstab hat die Form eines senkrechten Kreiszylinders mit dem Durchmesser d= 10 cm und der Länge l= 1m. Durch Abschleifen wird aus dem Holzstab ein Pfahl mit der Länge h= 8 cm und einem halbkugelförmigen Kopf.
1. Bestimme das Volumen dass der Pfahl nach dem Abschleifen besitzt. |
Okay, also wir schreiben am Donnerstag eine Mathe Klausur über Körperberechnung. Ich schreibe einfach mal was ich bei dieser Aufgabe jetzt rechnen würde. Bitte korrigieren wenn ich was falsch mache ^^
Zuerst würde ich das Volumen von dem Pfahl (Zylinder) vor dem Abschleifen ausrechnen. Dann dieses Volumen minus das Volumen der Halbkugel und das der Spitze. aber wie bekomme ich das Volumen der Halbkugel? Und bei der kegelförmigen Spitze,wie bekomme ich da r? Brauche ich ja um das Volumen des Kegels auszurechnen. Mit dem Strahlensatz?
Vielen Dank im Voraus Vlg Kimi-Maus
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:05 Di 15.04.2008 | Autor: | Zwerglein |
Hi, Kimi,
> Ein Holzstab hat die Form eines senkrechten Kreiszylinders
> mit dem Durchmesser d= 10 cm und der Länge l= 1m. Durch
> Abschleifen wird aus dem Holzstab ein Pfahl mit der Länge
> h= 8 cm und einem halbkugelförmigen Kopf.
Sag' mal: Stimmen die Zahlen?
Erst hat der Pfahl 'ne Länge von 1 m, dann ist er nur noch 8 cm lang?
Da wird aber eine ganze Menge abgeschliffen, stimmt's?!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:10 Di 15.04.2008 | Autor: | Kimi-Maus |
Ohje, ich hab einen Teil der Aufgabenstellung vergessen:
Durch Abschleifen wird aus dem Holzstab ein Pfahl mit einer kegelförmigen Spitze der Länge h= 8 cm und einem halbkugelförmigen Kopf
Sorry^^
|
|
|
|
|
Hi, Kimi,
> Ein Holzstab hat die Form eines senkrechten Kreiszylinders
> mit dem Durchmesser d= 10 cm und der Länge l= 1m. Durch
> Abschleifen wird aus dem Holzstab ein Pfahl mit der Länge
> h= 8 cm und einem halbkugelförmigen Kopf.
>
> 1. Bestimme das Volumen dass der Pfahl nach dem Abschleifen
> besitzt.
> Zuerst würde ich das Volumen von dem Pfahl (Zylinder) vor
> dem Abschleifen ausrechnen. Dann dieses Volumen minus das
> Volumen der Halbkugel und das der Spitze. aber wie bekomme
> ich das Volumen der Halbkugel? Und bei der kegelförmigen
> Spitze,wie bekomme ich da r? Brauche ich ja um das Volumen
> des Kegels auszurechnen. Mit dem Strahlensatz?
Du denkst zu kompliziert!
Du kannst Dir den Pfahl, der nach dem Abschleifen entsteht, aus 3 Stücken aufgebaut denken:
Aus einem Kegel,
einem Zylinder
und einer Halbkugel H.
Fangen wir mit der Halbkugel an: Da der ursprüngliche Balken den Durchmesser d=10cm hatte, hat die Halbkugel denselben Durchmesser bzw. den Radius r=5cm. Das Volumen kannst Du nun sicher ausrechnen.
Nun zum Kegel. Der hat natürlich auch den Radius r=5cm und die Höhe h=8cm. Auch hier ist das Volumen nun kein Problem mehr.
Bleibt der Mittelteil des Pfahls:
Durchmesser bzw. Radius wie vorher. Aber jetzt geht von der Länge des Zylinders die Höhe des Kegels (8cm) und die "Höhe" der Halbkugel (5cm) ab. Bleibt eine Restlänge von 100 - 5 - 8 = 87 cm.
Alles klar?
mfG!
Zwerglein
|
|
|
|
|
Aufgabe | Der Pfahl wird so weit in die Erde gerammt, dass sich ein Viertel seines Volumens unter der Erde befindet. Wie hoch ragt dann der Pfahl noch aus der Erde heraus? |
In der 1. Aufgabe (steht ja oben) war ja das Volumen gefragt. Da habe ich 7300 [mm] cm^3 [/mm] ausgerechnet. Aber bei dieser Aufgabe bin ich echt am Verzweifeln =(. Wie bekomme ich denn diese Höhe?
Vlg Kimi-Maus
|
|
|
|
|
Hallo Kimi-Maus!
> Der Pfahl wird so weit in die Erde gerammt, dass sich ein
> Viertel seines Volumens unter der Erde befindet. Wie hoch
> ragt dann der Pfahl noch aus der Erde heraus?
> In der 1. Aufgabe (steht ja oben) war ja das Volumen
> gefragt. Da habe ich 7300 [mm]cm^3[/mm] ausgerechnet. Aber bei
> dieser Aufgabe bin ich echt am Verzweifeln =(. Wie bekomme
> ich denn diese Höhe?
Naja, prinzipiell erstmal ein Viertel des Volumens ausrechnen, dann gucken, wieviel Volumen die Spitze hat (sofern ich die Aufgabe richtig im Kopf habe), und den Rest dann vom Zylindervolumen noch abziehen (also sofern da noch etwas übrig bleibt). Dafür benötigst du dann einfach die Zylinder-Volumenformel, wo die Länge die Unbekannte ist.
Viele Grüße
Bastiane
|
|
|
|