matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenVolumen, Oberfläche, Schwerpkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumen, Oberfläche, Schwerpkt
Volumen, Oberfläche, Schwerpkt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen, Oberfläche, Schwerpkt: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:28 Sa 16.08.2014
Autor: Sim22

Aufgabe
Berechnen Sie das Volumen, die Oberfläche und die Schwerpunkte des Quadratkegels Kq mit Spitze [mm] p=\vektor{0 \\ 0 \\ h } [/mm] (wobei h>0) und die Grundfläche:
[mm] Q={\vektor{x \\ y \\ 0 }\in\IR^3: |x|+|y|\le 1} [/mm]

Hallo Mathe-Forum,
Ich beschäftige mich im Moment mit dieser Aufgabe und komme derzeit nicht weiter.
Zunächst habe ich diesen Körper skizziert, also es handelt sich hier um ein "Quadratkegel" mit der quadratischen Grundfläche der Länge 1 und der Höhe h.
(Mein Koordinatensystem habe ich so angelegt, dass die X-Y-Ebene die Grundfläche aufspannt und die Z-Achse die Höhe darstellt)

Als erstes wollte ich das Volumen berechnen (welches ich für den Schwerpunkt benötige)
Das Volumen berechne ich folgendermaßen:
[mm] \integral_{Kq}^{}{1 dx} [/mm]
Nun stellt sich mir das erste Problem und zwar die Integralgrenzen.
Wenn ich den Körper richtig skizziert habe, dann müsste die Grundfläche mit der Höhe immer kleiner werden.
Den einzigen Ansatz für die Integralgrenzen für das Volumen wäre:
[mm] ((|x|+|y|)+z)\le [/mm] 1 (Die Grundfläche wird mit der "Höhe" z immer kleiner, aber diese Bedingung würde nur bis maximal z=1 gelten)
Könntet ihr mir ein paar Tipps geben, wie man grundsätzlich bei solchen Aufgaben die Grenzen schneller erkennt?

Ich würde mich über ein paar Tipps sehr freuen!
Mit freundlichen Grüßen!


        
Bezug
Volumen, Oberfläche, Schwerpkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Sa 16.08.2014
Autor: abakus


> Berechnen Sie das Volumen, die Oberfläche und die
> Schwerpunkte des Quadratkegels Kq mit Spitze [mm]p=\vektor{0 \\ 0 \\ h }[/mm]
> (wobei h>0) und die Grundfläche:
> [mm]Q={\vektor{x \\ y \\ 0 }\in\IR^3: |x|+|y|\le 1}[/mm]
> Hallo
> Mathe-Forum,
> Ich beschäftige mich im Moment mit dieser Aufgabe und
> komme derzeit nicht weiter.
> Zunächst habe ich diesen Körper skizziert, also es
> handelt sich hier um ein "Quadratkegel" mit der
> quadratischen Grundfläche der Länge 1 und der Höhe h.

Hallo,
das Ding heißt "Pyramide".

> (Mein Koordinatensystem habe ich so angelegt, dass die
> X-Y-Ebene die Grundfläche aufspannt und die Z-Achse die
> Höhe darstellt)

>

> Als erstes wollte ich das Volumen berechnen (welches ich
> für den Schwerpunkt benötige)
> Das Volumen berechne ich folgendermaßen:
> [mm]\integral_{Kq}^{}{1 dx}[/mm]
> Nun stellt sich mir das erste Problem und zwar die
> Integralgrenzen.
> Wenn ich den Körper richtig skizziert habe, dann müsste
> die Grundfläche mit der Höhe immer kleiner werden.
> Den einzigen Ansatz für die Integralgrenzen für das
> Volumen wäre:
> [mm]((|x|+|y|)+z)\le[/mm] 1 (Die Grundfläche wird mit der "Höhe"
> z immer kleiner, aber diese Bedingung würde nur bis
> maximal z=1 gelten)
> Könntet ihr mir ein paar Tipps geben, wie man
> grundsätzlich bei solchen Aufgaben die Grenzen schneller
> erkennt?

Hallo,
die Kantenlänge sinkt linear mit wachsendem z.
Ganz unten: 
[mm]  $|x|+|y|\le [/mm] 1$
In der Höhe z=h/2:
[mm]  $|x|+|y|\le [/mm] 1/2$ 
In der Höhe z=h:
  [mm] $|x|+|y|\le [/mm] 0$  

In einer beliebigen Höhe h gilt
[mm]  $|x|+|y|\le [/mm] k(z)$ , wobei k ein Term sein muss, der für z=0 den Wert 1 und für z=h den Wert 0 hat und linear sinkt. Das solltest du hinbekommen.
Gruz Abakus
>

> Ich würde mich über ein paar Tipps sehr freuen!
> Mit freundlichen Grüßen!

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]