matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVolumen Kugel  und Zuwachs delta v
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Volumen Kugel und Zuwachs delta v
Volumen Kugel und Zuwachs delta v < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Kugel und Zuwachs delta v: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Mi 07.07.2004
Autor: FLy

Habe leider schon wieder nee Frage

Ich soll den Zuwachs eines Volumen einer Kugel berechenen vom Radius r
desen Radius sich dann um delta r ändert dann bekomme ich als Lösung ja delta V Das gesucht ist heraus.

Nun habe ich mir Überlegt das Das Volumen einer Kugel

V= 3/4*pi*r ist

und delta V = 3/4*pi*delta r -3/4*pi*r sein muss oder?

nun brauche ich noch das differenzial dV dieser Funktion aber nach was soll man den da ableiten

Tut mir echt leid wenn ich so viel frage aber ich habe echt keinen Plan!

Fly



        
Bezug
Volumen Kugel und Zuwachs delta v: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mi 07.07.2004
Autor: Julius

Hallo Fly!

> Habe leider schon wieder nee Frage
>  
> Ich soll den Zuwachs eines Volumen einer Kugel berechenen
> vom Radius r
>  desen Radius sich dann um delta r ändert dann bekomme ich
> als Lösung ja delta V Das gesucht ist heraus.
>  
> Nun habe ich mir Überlegt das Das Volumen einer Kugel
>
>
> V= 3/4*pi*r ist

Du meinst:

$V = [mm] \frac{3}{4} \cdot \pi \cdot r^{\red{3}}$. [/mm]

> und delta V = 3/4*pi*delta r -3/4*pi*r sein muss oder?

Nein. Es gilt:

[mm] $\Delta [/mm] V$

$= [mm] \frac{3}{4} \pi \cdot [/mm] (r + [mm] \Delta r)^3 [/mm] - [mm] \frac{3}{4} \pi \cdot r^3$ [/mm]

$= [mm] \frac{3}{4} \pi r^3 [/mm] + 3 [mm] \cdot \frac{3}{4} \pi r^2 \Delta [/mm] r + 3 [mm] \cdot \frac{3}{4} \pi [/mm] r [mm] (\Delta r)^2 [/mm] + [mm] \frac{3}{4} \pi (\Delta r)^3 [/mm] - [mm] \frac{3}{4} \pi r^3$ [/mm]

$= 3 [mm] \cdot \frac{3}{4} \pi r^2 \Delta [/mm] r + 3 [mm] \cdot \frac{3}{4} \pi [/mm] r [mm] (\Delta r)^2 [/mm] + [mm] \frac{3}{4} \pi (\Delta r)^3$. [/mm]

Für [mm] $\Delta [/mm] r [mm] \to [/mm] 0$ folgt (in Differentialschreibweise):

$dV = 3 [mm] \cdot \frac{3}{4} \pi r^2 [/mm] dr = [mm] \frac{9\pi}{4} r^2 [/mm] dr$,

oder auch :

[mm] $\frac{dV}{dr} [/mm] =  [mm] \frac{9\pi}{4} r^2$. [/mm]

Auf das gleiche Ergebnis kommt man natürlich auch direkt, wenn man

$V(r) = [mm] \frac{3}{4} \pi r^3$ [/mm]

nach $r$ ableitet.


Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]