matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieVolumen Ellipsoid
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Volumen Ellipsoid
Volumen Ellipsoid < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Ellipsoid: Idee
Status: (Frage) beantwortet Status 
Datum: 18:31 Fr 29.12.2006
Autor: E-Techniker

Aufgabe
Berechnen sie das Volumen des Ellipsoides B mit den Halbachsen a,b,c,>0

B := [mm] \{(x,y,z) \IR³| x²/a²+y²/b²+z²/c² < 1 \} [/mm]

Wie ich Volumen integriere ist mir prinzipiell klar.
Nur ganz kurze Fragen zum Verständnis :
1.Wären Zylinder oder Kugelkoordianten sinnvoller ?
2. Wie wähle ich die die Grenzen für mein 3fach Integral (da liegt das größte Problem) ?

Egal welche Koordianten, mein Radis r würde ja von 0 bis 1 gehen ?

vielen Dank für Tipps !


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Volumen Ellipsoid: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 29.12.2006
Autor: moudi

Hallo E-Techniker

Da das Ellipsoid nicht rotationssymmetrisch ist nützen hier Kugel- oder Zylinderkoordinaten nicht so viel.

Die Ellipsenoberfläche ist gegeben durch die Gleichung: [mm] $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$. [/mm]

Die x-Koordinate kann maximale Werte annehmen, wenn y=z=0, in diesem Fall gilt [mm] $x=\pm [/mm] a$, deshalb läuft x von -a bis a:
[mm] $\int_{-a}^{a} \dots\,dx$. [/mm]

Zu gegebenem x, kann die y-Koordinat maximale Werte annehmen, wenn z=0, in diesem Fall gilt [mm] $y=\pm b\sqrt{1-x^2/a^2}$, [/mm] deshalb läuft y von [mm] $-b\sqrt{1-x^2/a^2}$ [/mm] bis [mm] $b\sqrt{1-x^2/a^2}$: [/mm]
[mm] $\int_{-a}^{a} \int_{-b\sqrt{1-x^2/a^2}}^{b\sqrt{1-x^2/a^2}}\dots\,dy\,dx$ [/mm]

Bei gegebenen x- und y- Koordinaten folgt für die z-Koordinate auf der Ellipsenoberfläche [mm] $z=\pm c\sqrt{1-x^2/a^2-y^2-b^2}$, [/mm] deshalb läuft z von [mm] $-c\sqrt{1-x^2/a^2-y^2/b^2}$ [/mm] bis [mm] $c\sqrt{1-x^2/a^2-y^2/b^2}$: [/mm]

[mm] $\int_{-a}^{a}\int_{-b\sqrt{1-x^2/a^2}}^{b\sqrt{1-x^2/a^2}} \int_{-c\sqrt{1-x^2/a^2-y^2/b^2}}^{c\sqrt{1-x^2/a^2-y^2/b^2}}\,dz\,dy\,dx$ [/mm]

mfG Moudi


Bezug
                
Bezug
Volumen Ellipsoid: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Fr 29.12.2006
Autor: E-Techniker

vielen Dank, das hilft enorm weiter ! Danke

Bezug
                
Bezug
Volumen Ellipsoid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Sa 30.12.2006
Autor: E-Techniker

Wenn ich das Integral ausrechne komme ich auf
[mm] V=6abc*\wurzel{1-x²/a²}*\wurzel{1-x²/a²-y²/b²} [/mm]


Wäre das korrekt ?


Eine Frage hätte ich noch, das Volumen eines Ellipsoids wird aber im Allgemeinen mit [mm] 4/3\pi*abc [/mm] angegeben. Wo besteht der Zusammenhang zum eben errechneten Integral ?
Vielen Dank im Voraus  !

Bezug
                        
Bezug
Volumen Ellipsoid: Tipp
Status: (Antwort) fertig Status 
Datum: 11:59 Sa 30.12.2006
Autor: Volker2

Hallo,

ich weiß nicht, we die Aufgabe konkret gelöst werden soll. Ich würde das Problem erstmal so vereinfachen:

Die lineare Abbildung

[mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} ax \\ by \\ cz \end{pmatrix} [/mm]

bildet die Einheitskugel bijektiv auf das Ellipsoid ab. Dessen Volumen ist also nach der mehrdimensionalen Substitutionsregel das Volumen der Einheitskugel multipliziert mit dem Betrag der Determinante der Matrix

[mm] \begin{pmatrix} a & 0 & 0\\ 0 & b & 0 \\ 0 & 0& c \end{pmatrix} [/mm]

die zu obiger Abbildung gehört. Also

Vol(Ellipsoid) = Vol(Einheitskugel) [mm] \left| abc \right| [/mm]

Damit ist die Volumenberechnung auf die Volumenberechnung der Einheitskugel reduziert. Die ist nun etwas einfacher (denn a=b=c=1)  als die entsprechende für das Ellipsoids. Vielleicht ist das Ergebnis sogar schon bekannt. Dann kommst du ganz ohne Rechnen zum Ziel. Wenn die mehrdimensionale Substitutionsregel SChwierigkeiten macht, kann auch einfach dreimal in dem auftretenden 3-Integral ganz normal (x [mm] \to [/mm] ax etc.) substituiert werden. Das Ergebnis ist in jedem Fall

Vol(Ellipsoid) = [mm] \bruch{4}{3}\pi \left| abc \right| (=\bruch{4}{3}\pi [/mm] abc , falls [mm] a,b,c\ge [/mm] 0).

Volker

Bezug
                        
Bezug
Volumen Ellipsoid: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Sa 30.12.2006
Autor: leduart

Hallo
Was immer auch du gerechnet hast, nachdem du über x,y,z integriert hast, kann in der Endformel nicht mehr x und y vorkommen!
Gruss leduart

Bezug
                        
Bezug
Volumen Ellipsoid: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mi 25.04.2007
Autor: laucky

Hallo,
das ist jetzt überfällig, aber eventuell hilft es deinen Nachfolgern: Wenn man ein bestimmtes Integral, d.h. ein Integral mit definierten Integrationsgrenzen berechnet, muss man das Integral berechnen und anschließend die Grenzen einsetzen:

[mm] \integral_{a}^{b}{f(x) dx} [/mm] = F(a) - F(b)

(wobei F hier die Stammfunktion von f bezeichnet). Zum Beispiel wäre

[mm] \integral_{0}^{1}{\integral_{0}^{y}{dx}dy}=\integral_{0}^{1}{(\bruch{1}{2}y^2-\bruch{1}{2}0^2) dy}=\bruch{1}{2*3}1^3-\bruch{1}{2*3}0^3=\bruch{1}{6} [/mm]

Bei einem bestimmten Integral (d.h. demjenigen mit Grenzen) tauchen die Variablen, über die integriert wird, nicht mehr in der Lösung auf!

Viel Erfolg euch allen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]