matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenVolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumen
Volumen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 So 30.01.2011
Autor: Igor1

Aufgabe
Bestimmen Sie das Volumen,welches innerhalb des Zylinders [mm] {(x,y,z)\in \IR^{3} : x^{2} +y^{2} \le 4}, [/mm] über der Ebene z=0 und unterhalb des durch die Gleichung [mm] (x+2)^{2}+y^{2}=4z [/mm] gegebenen Paraboloids liegt.

Hallo,

was soll man an Integrationsbegriffen oder Sätzen benutzen, um die Aufgabe zu lösen?

Ich habe keinen Ansatz, da ich mich mit der Thematik nicht so gut auskenne.


Gruss
Igor

        
Bezug
Volumen: Zylinderkoordinaten
Status: (Antwort) fertig Status 
Datum: 19:10 So 30.01.2011
Autor: Al-Chwarizmi


> Bestimmen Sie das Volumen,welches innerhalb des Zylinders
> [mm]{(x,y,z)\in \IR^{3} : x^{2} +y^{2} \le 4},[/mm] über der Ebene
> z=0 und unterhalb des durch die Gleichung
> [mm](x+2)^{2}+y^{2}=4z[/mm] gegebenen Paraboloids liegt.
>  Hallo,
>  
> was soll man an Integrationsbegriffen oder Sätzen
> benutzen, um die Aufgabe zu lösen?
>  
> Ich habe keinen Ansatz, da ich mich mit der Thematik nicht
> so gut auskenne.
>  
>
> Gruss
>  Igor


Hallo Igor,

ich würde es mal mit Zylinderkoordinaten versuchen:

   $\ x\ =\ [mm] r*cos(\varphi)$ [/mm]
   $\ y\ =\ [mm] r*sin(\varphi)$ [/mm]
   $\ z$   belassen

Grenzen für r und [mm] \varphi [/mm] :

    [mm] 0\le r\le r_{max} [/mm]
    [mm] 0\le \varphi\le 2\,\pi [/mm]
    
Wichtig ist dann noch die richtige Transformation des
Volumenelements  $\ dx*dy*dz$  in eines, das mittels der
neuen Koordinaten  r, [mm] \varphi [/mm] und z  ausgedrückt ist.


LG    Al-Chw.

Bezug
                
Bezug
Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Mo 31.01.2011
Autor: Igor1

Hallo Al-Chwarizmi,

meinst Du mit der "Transformation" die Substitutionsregel?

Gruss
Igor

Bezug
                        
Bezug
Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 31.01.2011
Autor: Al-Chwarizmi


> Hallo Al-Chwarizmi,
>  
> meinst Du mit der "Transformation" die Substitutionsregel?
>  
> Gruss
>  Igor


Ja, wenn du das so nennen willst. Formel:

    [mm] $\mathrm{d}V\ [/mm] =\ [mm] \mathrm{d}x\ \mathrm{d}y [/mm] \ [mm] \mathrm{d}z\ [/mm] =\ r \ [mm] \mathrm{d}r\ \mathrm{d}\varphi [/mm] \ [mm] \mathrm{d}z$ [/mm]


LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]