matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisVollständigkeit von Räumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Vollständigkeit von Räumen
Vollständigkeit von Räumen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständigkeit von Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 06.11.2012
Autor: momo123

Aufgabe
Zeigen Sie, dass [mm] C^1([a,b]) [/mm]  bezüglich der Supremumsnorm
[mm] ||f||_{C^0} [/mm] := [mm] \sup_{x \in [a,b] } [/mm] |f(x)|
nicht vollständig ist.

Hallo zusammen,
Ich soll obiges zeigen:
Hierzu sei ja erstmal gesagt, dass der Raum vollständig ist, falls jede Cauchy Folge in ihm konvergiert.

d.h. ja jetzt für die Aufgabe, dass man eine Cauchy Folge finden müsste,deren Grenzwert aber nicht in [mm] C^1([a,b]) [/mm]  liegt.
Ist die Idee soweit schon mal korrekt?

Das Problem ist, dass mir noch nicht ganz klar ist, wie so eine Folge aussehen soll, die selbst in [mm] C^1([a,b]) [/mm]  deren Grenzwert aber nicht stetig differenzierbar ist!

Wäre sehr dankbar für einen Hinweis!

Viele Grüße.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständigkeit von Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Di 06.11.2012
Autor: Gonozal_IX

Hiho,

nenne doch mal bitte eine einfache Funktion, die du kennst, die nicht in [mm] C^1 [/mm] aber in [mm] C^0 [/mm] liegt (oder anders ausgedrückt: Stetig, aber nicht differenzierbar).

Vergleich diese mal mit [mm] x^2 [/mm]

Und nun versuche mal eine Folge zu konstruieren, die bei [mm] x^2 [/mm] anfängt und bei deiner Funktion endet :-)

MFG,
Gono.

Bezug
                
Bezug
Vollständigkeit von Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Di 06.11.2012
Autor: momo123

HI,

Also als Funktion die zwar stetig ist, aber nicht differenzierbar fällt mir jetzt spontan nur die Betragsfunktion f(x) = |x| ein, die ist ja stetig, aber in x=0 nicht differenzierbar.

Wenn ich diese jetzt Vergleiche mit [mm] f(x)=x^2 [/mm] fällt mir nur auf, dass der Betrag halt in x=0 einen Knick hat, weshalb sie dort nicht differenzierbar ist und [mm] x^2 [/mm] schön glatt verläuft.

Eine Folge die bei [mm] x^2 [/mm] anfängt und bei |x| endet im Intervall [a,b]?
d.h. man müsste eine Folge konstruieren, die den Grenzwert |x| hat?
Sehe ich das richtig?

Aber wie soll so eine Folge aussehen?
Wenn man z.b. wie folgt wählt:

[mm] f_n [/mm] (x) = [mm] ((\bruch{1}{n} x)^2)^{\bruch{1}{2}} [/mm]

Viele Grüße.


Bezug
                        
Bezug
Vollständigkeit von Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Di 06.11.2012
Autor: Gonozal_IX

Hiho,

> Also als Funktion die zwar stetig ist, aber nicht
> differenzierbar fällt mir jetzt spontan nur die
> Betragsfunktion f(x) = |x| ein, die ist ja stetig, aber in
> x=0 nicht differenzierbar.

[ok]

> Wenn ich diese jetzt Vergleiche mit [mm]f(x)=x^2[/mm] fällt mir nur
> auf, dass der Betrag halt in x=0 einen Knick hat, weshalb
> sie dort nicht differenzierbar ist und [mm]x^2[/mm] schön glatt verläuft.
>
> Eine Folge die bei [mm]x^2[/mm] anfängt und bei |x| endet im Intervall [a,b]?

Jo.

> d.h. man müsste eine Folge konstruieren, die den Grenzwert |x| hat?

Ja.

> Wenn man z.b. wie folgt wählt:
>
> [mm]f_n[/mm] (x) = [mm]((\bruch{1}{n} x)^2)^{\bruch{1}{2}}[/mm]

Wogegen konvergiert das?
Offensichtlich nicht gegen |x|.

Eine Vielversprechende Vorgehensweise wäre folgende:
Die Betragsfunktion ist ja nur in x=0 nicht differenzierbar.
Dann "schneide" um die Null doch einfach ein kleines Intervallstück heraus und ergänze die Lücke durch eine in Null differenzierbare Funktion, bspw. [mm] x^2 [/mm]
Diese musst du natürlich so anpassen, dass deine neue Funktion auch an den "Nahtstellen" (also den Intervallgrenzen deines herausgenommenen Intervalls) weiterhin differenzierbar bleibt. Dies ist aber nicht so wirklich schwer :-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]