matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenVollständiges Differential
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrieren und Differenzieren" - Vollständiges Differential
Vollständiges Differential < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständiges Differential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Do 04.07.2013
Autor: Marcel88

Aufgabe
Ist g(x,y) = ln( [mm] \wurzel{x^2+y^2})dx [/mm] - [mm] arctan(\bruch{y}{x})dy [/mm] ein vollständiges Inegtral?

hey,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

müsste ich um die Aufgabe zu lösen ln( [mm] \wurzel{x^2+y^2})dx [/mm] nach x aufleiten und [mm] arctan(\bruch{y}{x})dy [/mm] nach y aufleiten um dann zuschauen ob ich durch Subtraktion der beiden Stammfunktionen eine gemeinsame Funktion g(x,y) finde?

Weil ansich beschreibt ja ein vollständiges Differential die Summe der einzellenen Ableitungen oder?

Viele Grüße

Marcel

        
Bezug
Vollständiges Differential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Do 04.07.2013
Autor: M.Rex

Hallo

> Ist g(x,y) = ln( [mm]\wurzel{x^2+y^2})dx[/mm] -
> [mm]arctan(\bruch{y}{x})dy[/mm] ein vollständiges Inegtral?

Kann es sein, dass hier Integrale fehlen? Die Schreibweise dx bzw dy deuten daraufhin und f(x)dx macht als Notation auch keinen Sinn.

> hey,

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> müsste ich um die Aufgabe zu lösen ln(
> [mm]\wurzel{x^2+y^2})dx[/mm] nach x aufleiten

Gewöhne dir bitte den Terminus "eine Stammfunktion bilden" an, das Wort "Aufleiten" gibt es nicht.

Marius

Bezug
                
Bezug
Vollständiges Differential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Do 04.07.2013
Autor: Marcel88

hey,

danke für den Hinweis :) aber was die Integralzeichen angeht, nein da sind in der Aufgabe keine ich habe die Aufgabe 1 zu 1 übernommen.


Viele Grüße


Marcel

Bezug
        
Bezug
Vollständiges Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Do 04.07.2013
Autor: fred97

Überprüfe , ob die Integrabilitätsbedingung erfüllt ist

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]