matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVollständiger Gaußscher Algori
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Vollständiger Gaußscher Algori
Vollständiger Gaußscher Algori < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständiger Gaußscher Algori: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:05 Mo 18.12.2006
Autor: bbki

Aufgabe
Es seien A,B  zwei beliebige reguläre Matrizen aus R^nxn. Zeigen Sie, dass dann auch die Produktmatrix  regulär ist und dass gilt
(AB)^-1 = B^-1*A^-1


Sehr geeherte damen und herren,

ich bitte um hilfe bei dieser aufgabe. leider stehe ich hier auf verlorenen posten und habe keine idee, wie ich zu dem beweis kommen könnte.

so, bin schon ein wenig weiter gekommen und poste jetzt mal meinen zwischenstand:

ich kann zeigen, dass die definitionsgleichung für die inverse erfüllt ist, auf grund des assoziativgesetzes, das hier angewendet werden darf, erhalte ich den beweis, dass (ab) invertierbar ist:
(AB)(B^-1A^-1)=A(BB^-1)A^-1=AA^-1=einheitsmatrix

meine frage lautet nun, ist das schon der endgültige beweis oder habe ich noch etwas vergessen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständiger Gaußscher Algori: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mo 18.12.2006
Autor: angela.h.b.


> Es seien A,B  zwei beliebige reguläre Matrizen aus R^nxn.
> Zeigen Sie, dass dann auch die Produktmatrix  regulär ist
> und dass gilt
>  (AB)^-1 = B^-1*A^-1

Hallo,

[willkommenmr].

> ich bitte um hilfe bei dieser aufgabe. leider stehe ich
> hier auf verlorenen posten und habe keine idee, wie ich zu
> dem beweis kommen könnte.

Du hast ihn bereits.

>  
> ich kann zeigen, dass die definitionsgleichung für die
> inverse erfüllt ist, auf grund des assoziativgesetzes, das
> hier angewendet werden darf, erhalte ich den beweis, dass
> (ab) invertierbar ist:
>  (AB)(B^-1A^-1)=A(BB^-1)A^-1=AA^-1=einheitsmatrix
>  
> meine frage lautet nun, ist das schon der endgültige beweis
> oder habe ich noch etwas vergessen?

Wie gesagt, Du hast ihn.
Ich würde ihn nur noch etwas "verschönern":

A,B sind regulär, daher gibt es die Inversen [mm] A^{-1}, B^{-1}. [/mm]
Die Multiplikation von Matrizen ist assoziativ, daher erhalte ich
>

>  [mm] (AB)(B^{-1}A^{-1})=A(BB^{-1})A^-1=AA^-1=einheitsmatrix [/mm]

Also ist AB invertierbar, und es ist [mm] (AB)^{-1}=B^{-1}A^{-1}. [/mm]
(Dieser Schritt hat für Deinen Korrektor keinerlei Erklärungsbedarf - aber vielleicht für Dich:
wenn Du AB mit [mm] B^{-1}A^{-1} [/mm] multipliziertst, erhältst Du die Einheitsmatrix. Also ist [mm] B^{-1}A^{-1} [/mm] das Inverse zu AB. Das Inverse zu AB in Zeichen aufgeschrieben: [mm] (AB)^{-1}) [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]