matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion (Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Vollständige Induktion (Beweis
Vollständige Induktion (Beweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion (Beweis: Lösung
Status: (Frage) beantwortet Status 
Datum: 15:59 Mi 29.10.2008
Autor: cannesty

Aufgabe 1
Zeigen sie für alle [mm] n\in\IN: 2(n+1)n^{n} \le (n+1)^{n+1} [/mm]

Aufgabe 2
Für welche natürlichen Zahlen [mm] n\in\IN [/mm] ist die AUssage [mm] 2^{n}*n! [/mm] < [mm] n^{n} [/mm] richtig? Beweisen sie ihre Vermutung!

Hallo an alle,

ich sitze seit fast zwei Stunden an diesem (bestimmt einfachen Beweis) und weiß nicht, wie ich umformen soll usw.. Ich kriege es nicht hin. Aufgabe 1 hab ich versucht - keine Ahnung. Aufgabe 2: ebenso, ich hab da nur rausgefunden, dass es für 6 [mm] \le [/mm] n gilt.

Kann mir jemand helfen? Vielen Dank!

Lg, Sven

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vollständige Induktion (Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mi 29.10.2008
Autor: abakus


> Zeigen sie für alle [mm]n\in\IN: 2(n+1)n^{n} \le (n+1)^{n+1}[/mm]
>  
> Für welche natürlichen Zahlen [mm]n\in\IN[/mm] ist die AUssage
> [mm]2^{n}*n![/mm] < [mm]n^{n}[/mm] richtig? Beweisen sie ihre Vermutung!
>  Hallo an alle,
>  
> ich sitze seit fast zwei Stunden an diesem (bestimmt
> einfachen Beweis) und weiß nicht, wie ich umformen soll
> usw.. Ich kriege es nicht hin. Aufgabe 1 hab ich versucht -
> keine Ahnung. Aufgabe 2: ebenso, ich hab da nur
> rausgefunden, dass es für 6 [mm]\le[/mm] n gilt.
>
> Kann mir jemand helfen? Vielen Dank!

Wenn du die Aufgabe im Unterforum "Induktion" platziert hast, bist du schon auf der richtigen Spur.
Dann schreibe doch mal den Induktionsanfang und die Induktionsvoraussetzung auf.
Gruß Abakus




>  
> Lg, Sven
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
        
Bezug
Vollständige Induktion (Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 29.10.2008
Autor: fred97

Tipp: bei Aufgabe 1 kannst Du n+1 kürzen.

Aufgabe 2 ist ein einfacher Induktionsbeweis, wenn Du Aufgabe 1 verwndest

FRED

Bezug
                
Bezug
Vollständige Induktion (Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Mi 29.10.2008
Autor: cannesty

Also zu Aufgabe 1:

Hab gezeigt, dass die Aufgabe für n=1 gilt (denn dann sind beide Seiten 4!). Nun sage ich, dass wir annehmen, es gelte für A(n). Zu zeigen: Aus A(n) folgt A(n+1). ALso:

[mm] (n+2)^{n+2} [/mm] = [mm] (n+2)^{n}*(n+2)^{2} [/mm] und nun? :-(

Bezug
                        
Bezug
Vollständige Induktion (Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Do 30.10.2008
Autor: abakus


> Also zu Aufgabe 1:
>  
> Hab gezeigt, dass die Aufgabe für n=1 gilt (denn dann sind
> beide Seiten 4!). Nun sage ich, dass wir annehmen, es gelte
> für A(n). Zu zeigen: Aus A(n) folgt A(n+1). ALso:
>  
> [mm](n+2)^{n+2}[/mm] = [mm](n+2)^{n}*(n+2)^{2}[/mm] und nun? :-(  

Die zu beweisende Ungleichung ist äquivalent zu [mm] 2<(\bruch{n+1}{n})^n. [/mm]
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]