matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Idee
Status: (Frage) beantwortet Status 
Datum: 15:54 Do 03.11.2011
Autor: hubbel

Aufgabe
Zeigen Sie für [mm]n \in \IN[/mm]: [mm]\summe_{k=1}^{n}(2k-1)^2=\left \bruch{n(2n-1)(2n+1)}{3} \right[/mm]

Induktionsanfang:

n=1

[mm]\summe_{k=1}^{1}(2k-1)^2=1=\left \bruch{(2-1)(2+1)}{3} \right[/mm]

Das heißt für n=1 gilt das.

Nun für n+1:

[mm]\summe_{k=1}^{n+1}(2k-1)^2=\left \bruch{(n+1)(2(n+1)-1)(2(n+1)+1)}{3} \right[/mm]

Wie beweise ich das aber nun? Ich muss ja n und n+1 irgendwie in "Relation" bekommen, wie genau mache ich das?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Do 03.11.2011
Autor: Levit

Du musst die Summe auf der linken Seite deiner Behauptung jetzt so schreiben, dass du sie nur noch von k=1 bis n hast, und das n+1 'te Glied einzeln zu der Summe bis n addierst. Was ist denn jetzt die rechte Seite, wenn du noch die Induktionsvoraussetzung benutzt?

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 03.11.2011
Autor: hubbel

Wie man die Summe umwandelt weiß ich gar nicht, wie macht man das? Welche Regeln gelten da?

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Do 03.11.2011
Autor: Levit

Die, die auch für die normale Summation gelten.

(a+b+c+d+e+f)=(a+b+c+d+e)+f


Ein kleiner Hinweis:

[mm] \summe_{k=1}^{n+1} k^2=\summe_{k=1}^{n} k^2 +(n+1)^2 [/mm]              

Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Do 03.11.2011
Autor: hubbel

Verstehe:

[mm]\summe_{k=1}^{n+1}(2k-1)^2=\summe_{k=1}^{n}(2k-1)^2+(2(n+1)-1)^2[/mm]

Und nun kann die Vorraussetzung

[mm]\summe_{k=1}^{n}(2k-1)^2=\left \bruch{n(2n-1)(2n+1)}{3} \right[/mm]

einsetzen und erhalte:

[mm]\summe_{k=1}^{n+1}(2k-1)^2=\left \bruch{n(2n-1)(2n+1)}{3} \right+(2(n+1)-1)^2[/mm]

Ist das korrekt? Und wenn ja, wie muss ich weiter vorgehen? Hab das ganze mal ausmultipliziert, kommt nichts aussagekräftiges dabei heraus, wenn ich mich nicht verrechnet habe.

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 03.11.2011
Autor: Levit

[mm] \summe_{k=1}^{n+1}(2k-1)^2=\bruch{n(2n-1)(2n+1)+3(2n+1)^2}{3} [/mm]

[mm] =\bruch{(2n+1)(n(2n-1)+3(2n+1)}{3} [/mm]

[mm] =\bruch{(2n+1)(2n^2-n+6n+3)}{3} [/mm]

[mm] =\bruch{(2n+1)(2n^2+3n+2n+3)}{3} [/mm]

[mm] =\bruch{(2n+1)(n+1)(2n+3)}{3} [/mm]

qed

Bezug
                                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Do 03.11.2011
Autor: hubbel

Verstanden, danke!

Bezug
                                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Do 03.11.2011
Autor: hubbel

Ich sehe gerade, dass das doch gar nicht passt. In der zweite Zeile fehlt das Quadrat und eigentllich müsste es [mm] 3(2(n+1)-1)^2 [/mm] heißen.

Wenn ich mich nicht irre.

Bezug
                                                        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Do 03.11.2011
Autor: Levit

Ich glaube das Quadrat entfällt wegen ausklammern, kann das sein? Eigentlich müsste es genau so richtig sein. Sont schreib noch mal auf, wie dein Beweis jetzt aussieht bitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]