matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Vollständige Induktion?
Vollständige Induktion? < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Fr 03.06.2011
Autor: Diophant

Aufgabe
z.z.:
Es seien m, n ganze Zahlen [mm] \ge0 [/mm] und m>0. Dann gibt es ganze Zahlen q, r [mm] \ge [/mm] 0 derart, dass

n=qn+r und [mm] 0\le [/mm] r<m.

Durch diese Bedingungen sind q und r eindeutig bestimmt.

Hallo zusammen,

es geht mir hier nicht darum, diesen allseits bekannten Sachverhalt zu beweisen. Meine Frage bezieht sich auf folgenden Beweis von Serge Lang aus dem Werk Algebraische Strukturen:

---

Beweis. Wir beweisen zuerst die Existenz durch Induktion nach n.
(0) Für n=0 sind mit q=r=0 die Bedingungen erfüllt.
(1) Es sein nun n>0. Im Falle n<m nehmen wir q=0 und r=n. Im Falle n [mm] \ge [/mm] m haben wir 0 [mm] \le [/mm] n-m < n. Nach Induktionsvoraussetzung gibt es [mm] q_1, [/mm] r [mm] \ge [/mm] 0 mit

[mm] n-m=q_1 [/mm] *m+r und r<m.

Dann ist

[mm] n=m+q_1 m+r=(1+q_1)m+r. [/mm]

Damit ist die Existenz von [mm] q=1+q_1 [/mm] und r wie gewünscht bewiesen.

---

Es folgt nun noch ein kurzer Beweis der Eindeutigkeit. Meine Frage ist nun einfach die, weshalb dieser Beweis (bei dem ich keinerlei Mühe habe, ihn nachzuvollziehen) in dem Buch als vollständige Induktion bezeichnet wird. Ich sehe zwar einen Induktionsanfang, aber keinen Induktionsschluss, weder in der Form A(k)=>A(k+1) noch in der Form A(0), A(1), ... A(k-1) => A(k).

Hat jemand dafür eine Erklärung?

Vielen Dank im Voraus für jede Antwort.

Gruß, Diophant

        
Bezug
Vollständige Induktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Sa 04.06.2011
Autor: rainerS

Hallo!

> z.z.:
>  Es seien m, n ganze Zahlen [mm]\ge0[/mm] und m>0. Dann gibt es
> ganze Zahlen q, r [mm]\ge[/mm] 0 derart, dass
>  
> n=qn+r und [mm]0\le[/mm] r<m.
>  
> Durch diese Bedingungen sind q und r eindeutig bestimmt.
>  Hallo zusammen,
>  
> es geht mir hier nicht darum, diesen allseits bekannten
> Sachverhalt zu beweisen. Meine Frage bezieht sich auf
> folgenden Beweis von Serge Lang aus dem Werk Algebraische
> Strukturen
:
>  
> ---
>  
> Beweis. Wir beweisen zuerst die Existenz durch Induktion
> nach n
.
>  (0) Für n=0 sind mit q=r=0 die Bedingungen erfüllt.
>  (1) Es sein nun n>0. Im Falle n<m nehmen wir q=0 und r=n.
> Im Falle n [mm]\ge[/mm] m haben wir 0 [mm]\le[/mm] n-m < n. Nach
> Induktionsvoraussetzung gibt es [mm]q_1,[/mm] r [mm]\ge[/mm] 0 mit
>  
> [mm]n-m=q_1[/mm] *m+r und r<m.
>  
> Dann ist
>  
> [mm]n=m+q_1 m+r=(1+q_1)m+r.[/mm]
>  
> Damit ist die Existenz von [mm]q=1+q_1[/mm] und r wie gewünscht
> bewiesen.
>  
> ---
>  
> Es folgt nun noch ein kurzer Beweis der Eindeutigkeit.
> Meine Frage ist nun einfach die, weshalb dieser Beweis (bei
> dem ich keinerlei Mühe habe, ihn nachzuvollziehen) in dem
> Buch als vollständige Induktion bezeichnet wird. Ich sehe
> zwar einen Induktionsanfang, aber keinen Induktionsschluss,
> weder in der Form A(k)=>A(k+1) noch in der Form A(0), A(1),
> ... A(k-1) => A(k).

Nicht in dieser speziellen Form, aber in der Form $A(m) [mm] \implies [/mm] A(n)$ für jedes $m<n$.

Viele Grüße
   Rainer


Bezug
                
Bezug
Vollständige Induktion?: Frage geklärt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Sa 04.06.2011
Autor: Diophant

Hallo rainerS,

danke, dass du dir das durchgesehen hast. Dann heißt das also generell vollst. Induktion, wenn für m<n A(m) => A(n) gilt und die Aussage für ein festes [mm] n_0 [/mm] wahr ist. Macht ja auch Sinn, weil man sich ja im Prinzip auch hier auf das entsprechende Peano-Axiom stützt.

Vielen Dank also und schönes Wochenende rings herum!

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]