matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:05 Mo 24.01.2011
Autor: noplan724

Aufgabe
Frage: Wieviele Möglichkeiten b(n) gibt es aus n Personen 4 für eine Bridgerunde auszuwählen?

Antwort: Für alle n [mm] \ge [/mm] 4 gilt b(n) = [mm] \bruch{n(n-1)(n-2)(n-3)}{24}. [/mm]

Beweisen Sie die Korrektheit der Antwort mit vollständiger Induktion. Gliedern Sie Ihre Beweisführung, wie im Script vorgegeben.



Ich habe begonnen die Aufgabe zu lösen:

zu zeigen: Für alle n [mm] \ge [/mm] 4 gilt = b(n) = [mm] \bruch{n(n-1)(n-2)(n-3)}{24}. [/mm]

Beweis mit vollständiger Induktion: über n

Induktionsanfang: n = 4

b(4) = [mm] \bruch{4(4-1)(4-2)(4-3)}{24} [/mm] = 1.

Induktionsschritt:

Wir schließen von n = k auf n = k+1

Induktionsannahme: b(k) = [mm] \bruch{k(k-1)(k-2)(k-3)}{24} [/mm]

zu zeigen: b(k+1) = [mm] \bruch{(k+1)((k+1)-1)((k+1)-2)((k+1)-3)}{24}) [/mm]

und jetzt weiß ich nicht weiter. Ich muss doch das Ganze jetzt so umschreiben, dass wieder b(k+1) = [mm] \bruch{(k+1)((k+1)-1)((k+1)-2)((k+1)-3)}{24} [/mm] rauskommt, oder??

Vielen Dank schonmal für Hilfe!!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=443342

        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Mo 24.01.2011
Autor: fred97

Wie kommst Du denn auf

                $ [mm] \summe_{i=1}^{n}i [/mm]  = b(n)$   ?????

Das stimmt nicht, denn  $ [mm] \summe_{i=1}^{n}i [/mm] = [mm] \bruch{n(n+1)}{2}$ [/mm]

FRED

Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Mo 24.01.2011
Autor: noplan724

Stimmt, das ist natürlich dann falsch. Ich werde meinen Beitrag editieren.

Bezug
        
Bezug
Vollständige Induktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:15 Mo 24.01.2011
Autor: noplan724

So, ich meine eine Lösung zu haben:

$ b(k+1) = [mm] \frac{k(k-1)(k-2)(k-3)}{24} [/mm] + [mm] \frac{k(k-1)(k-2)}{6} [/mm] $ müsste stimmen.

Ich bin mir allerdings noch nicht ganz sicher, wie ich das nun in die Form der Vollständigen Induktion bringe, ich hoffe, mir kann dabei jemand helfen.

Bezug
                
Bezug
Vollständige Induktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 26.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vollständige Induktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Mi 26.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]