matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Verständnis
Status: (Frage) beantwortet Status 
Datum: 16:06 Do 20.05.2010
Autor: Adri_an

Aufgabe
Sei [mm] $\vektor{k \\ l}$ [/mm] der Binomialkoeffizient.

[mm] $\vektor{2^{n}-1 \\ l}$ [/mm] ist ungerade für alle [mm] $0\le l\le 2^{n}-1$. [/mm]

Wie ist das zu verstehen?

Ist das eine Aussage über $n$ oder $l$?

Kann mir das jemand mit Begründung erklären?

Wenn es eine Aussage über $n$ ist, was ich stark vermute, ist dann mein Lösungsansatz richtig?

Mein Lösungsansatz:

Z.Z.: [mm] $\vektor{2^{n}-1 \\ l}=2n-1$. [/mm]

Bew.:

Induktionsanfang:

Ann.: [mm] $n=1\Rightarrow\vektor{2^1-1 \\ 0}=\vektor{0 \\ 0}=1$ [/mm] ; $2*1-1$.

Induktionsschritt:

[mm] $\vektor{2^{n+1}-1 \\ l}=\produkt_{j=1}^{l}\bruch{(2^{n+1}-1)+j+1}{j}=\produkt_{j=1}^{l}\bruch{2^{n+1}+j}{j}$ [/mm]

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Fr 21.05.2010
Autor: Leopold_Gast

Der Induktionsanfang stimmt nicht. Für [mm]n=1[/mm] geht es um die Binomialkoeffizienten [mm]{1 \choose 0}[/mm] und [mm]{1 \choose 1}[/mm] und nicht um [mm]{0 \choose 0}[/mm]. Der letzte Binomialkoeffizient kommt bei [mm]n=0[/mm] vor. Immerhin sind alle drei Binomialkoeffizienten gleich 1, so daß die Behauptung für [mm]n=0[/mm] und [mm]n=1[/mm] stimmt. Auch [mm]n=2[/mm] könnte man sich noch überlegen:

[mm]{3 \choose 0} = 1 \, , \ {3 \choose 1} = 3 \, , \ {3 \choose 2} = 3 \, , \ {3 \choose 3} = 1[/mm]

Auch das paßt also: Alle vier sind ungerade.

Weiter stimmt deine Formel aus dem Induktionsschritt nicht. Es ist auch fraglich, ob eine Induktion hier sinnvoll ist. Besser ist es, den Binomialkoeffizienten direkt zu untersuchen. Wir können [mm]n \geq 3[/mm] annehmen. Für [mm]l=0[/mm] ist der Binomialkoeffizient 1, also ungerade, für [mm]l>0[/mm] gilt

[mm]{{2^n - 1} \choose l} = \prod_{j=1}^l \frac{2^n - j}{j}[/mm]

Und hier nimmt man sich den [mm]j[/mm]-ten Faktor vor: [mm]\frac{2^n - j }{j}[/mm], und schreibt [mm]j[/mm] als

[mm]j = 2^k \cdot u[/mm] mit ganzen Zahlen [mm]k,u \geq 0[/mm] und [mm]k
Dann gilt:

[mm]\frac{2^n - 2^k \cdot u}{2^k \cdot u} = \frac{2^{n-k} - u}{u}[/mm]

Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:28 Fr 21.05.2010
Autor: Adri_an

Danke, dass du mich auf meine Fehler aufmerksam gemacht hast und mir noch weitere gute Tipps gegeben hast. Ich hoffe, mit deinen Tipps weiterzukommen.



Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Fr 21.05.2010
Autor: Adri_an

Aah!

Ich resümiere:

Die Frage, die für den Fall [mm] $n\ge [/mm] 3$ und $0<l \ [mm] (\le 2^{n}-1)$ [/mm] zu stellen ist, ist:

Wann ist das Produkt [mm] $\produkt_{j=1}^{l}\bruch{2^{n}-j}{j}$ [/mm] ungerade?

Deine Antwort darauf war, nun mit meinen Gedanken dazu:

> Und hier nimmt man sich den [mm]j[/mm]-ten Faktor vor: [mm]\frac{2^n - j }{j}[/mm],

Du nimmst dir den $j.$-Faktor vor, weil du wahrscheinlich weißt, wenn ein Faktor gerade ist, dann ist das Produkt (aus natürlichen Zahlen) auch gerade. Korrekt? Wenn nicht, was hast du dir gedacht?
  

> und schreibt [mm]j[/mm] als
>  
> [mm]j = 2^k \cdot u[/mm] mit ganzen Zahlen [mm]k,u \geq 0[/mm] und [mm]k
> [mm]u[/mm] ungerade

D.h., $j$ ist gerade. Hier sehe ich ein Problem, denn $j$ erfüllt [mm] $1\le j\le l\le 2^{n}-1$. [/mm] Mit anderen Worten $j$ kann auch ungerade sein. Wie erfasse ich die ungeraden $j$?

> Dann gilt:
>  
> [mm]\frac{2^n - 2^k \cdot u}{2^k \cdot u} = \frac{2^{n-k} - u}{u}[/mm]

Okay, aber was sagt mir das? Kannst du mir einen Tipp geben, wie ich das Letzte verstehen soll?



Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Fr 21.05.2010
Autor: Leopold_Gast

Jede positive ganze Zahl [mm]j[/mm] kann als Produkt einer Zweierpotenz und einer ungeraden Zahl dargestellt werden, z.B.

[mm]168 = 2^3 \cdot 21[/mm]

Man zieht einfach so viele Faktoren 2 heraus, bis etwas Ungerades übrigbleibt. Und da hast du den Exponenten [mm]k=0[/mm] vergessen, den ich in meiner Darstellung ausdrücklich zugelassen habe:

[mm]169 = 2^0 \cdot 169[/mm]

Und jetzt zurück:

[mm]\frac{2^n - j}{j} = \frac{2^{n-k} - u}{u}[/mm]

Was gilt nun bezüglich Geradheit und Ungeradheit bei Zähler und Nenner des Bruches?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]