matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Fr 06.11.2009
Autor: kolmi

Aufgabe
Zeigen sie mit vollständiger Induktion, dass die Summe der natürlichen Zahlen kleiner als [mm] 10n [/mm], die weder durch 2 noch durch 5 teilbar sind [mm] 20n^2 [/mm] beträgt.

Ich versteh nich wie ich das in eine Summe schreibe? Den Beweis kriege ich denk ich dann hin aber wie lautet die verdammt Summe ;)
Wär super wenn jemmand helfen kann

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Fr 06.11.2009
Autor: steppenhahn

Hallo!

> Zeigen sie mit vollständiger Induktion, dass die Summe der
> natürlichen Zahlen kleiner als [mm]10n [/mm], die weder durch 2
> noch durch 5 teilbar sind [mm]20n^2[/mm] beträgt.
>  Ich versteh nich wie ich das in eine Summe schreibe? Den
> Beweis kriege ich denk ich dann hin aber wie lautet die
> verdammt Summe ;)
>  Wär super wenn jemmand helfen kann

Nimm' die exemplarisch mal die Zahlen von 0 bis 10 vor - welche werden da in die Summe eingearbeitet, welche nicht?

Nur die Zahlen 1, 3, 7 und 9, stimmt's?

Und so ist es nun auch allgemein. Du hast also aufzusummieren:

(1 + 3 + 7 + 9)
+ ((10 + 1) + (10 + 3) + (10 + 7) + (10 + 9))
+ ((20 + 1) + (20 + 3) + (20 + 7) + (20 + 9))
+ ...

Also entweder du schreibst die Summe so:

[mm] $\summe_{i=0}^{n}\Big((10i [/mm] + 1) + (10i + 3) + (10i + 7) + (10i + [mm] 9))\Big)$ [/mm]

oder dann vereinfacht:

[mm] $\summe_{i=0}^{n}\Big(40i [/mm] + [mm] 20\Big)$ [/mm]

(die man dann im übrigen schnell zu

[mm] $20*\summe_{i=0}^{n}\Big(2i [/mm] + [mm] 1\Big)$ [/mm]

umformen kann, wobei nun die Summe gerade die der ungeraden Zahlen, was bekanntermaßen [mm] n^{2} [/mm] ist... ;-) )

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]