matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesVollständige Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Vollständige Induktion
Vollständige Induktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 08.02.2005
Autor: acosybear

Hallo zusammen,

ich versuche gerade mich mühsam an Mathe ranzutasten nach einer sehr langen Pause und dachte die Beweismethodik durch vollständige Induktion verstanden zu haben, bis ich auf folgende Aufgabe stieß, zu der ich leider keine Musterlösung habe:

Beweisen Sie: Für alle n [mm] \varepsilon \IN [/mm] gilt  
[mm] \summe_{k=1}^{n} \bruch{1}{(2k -1 ) (2k +1)} [/mm] = [mm] \bruch{n}{2n+1} [/mm]

Ich habe den Induktionsanfang auf n= 1 gesetzt und erhalte
[mm] \summe_{k=1}^{1} \bruch{1}{3} [/mm] = [mm] \bruch{1}{3} [/mm]

Danach setze ich den zweiten Induktionsschritt auf n=2 und erhalte
[mm] \summe_{k=1}^{2} \bruch{1}{(2k -1 ) (2k +1)} [/mm] +  [mm] \bruch{1}{(2k -1 ) (2k +1)} [/mm] = [mm] \bruch{n}{2n+1} [/mm]
n= 2 eingesetzt:
[mm] \summe_{k=1}^{2} \bruch{1}{3} [/mm] +  [mm] \bruch{1}{3} [/mm] = [mm] \bruch{2}{5} [/mm]

Daraus folgt doch, dass die Behauptung nur für n= 1 gilt und ansonsten falsch ist. Oder habe ich da irgendwo nen Gedankenfehler?

Vielen Dank für Eure Hilfe im voraus
Gruß oli




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Fehler gefunden
Status: (Antwort) fertig Status 
Datum: 14:55 Di 08.02.2005
Autor: Bastiane

Hallo oli!
Ich glaube, ich habe deinen Fehler gefunden! :-)

> Beweisen Sie: Für alle n [mm]\varepsilon \IN[/mm] gilt  
>
> [mm]\summe_{k=1}^{n} \bruch{1}{(2k -1 ) (2k +1)}[/mm] =
> [mm]\bruch{n}{2n+1} [/mm]
>  
> Ich habe den Induktionsanfang auf n= 1 gesetzt und
> erhalte
>  [mm]\summe_{k=1}^{1} \bruch{1}{3}[/mm] = [mm][mm] \bruch{1}{3} [/mm]

[ok]

> Danach setze ich den zweiten Induktionsschritt auf n=2 und

das macht man aber nicht - du kannst ja schlecht für n alle natürlichen Zahlen einsetzen, stattdessen sollst du ja einen Induktionsbeweis machen. Man schreibt dann also als Induktionsvoraussetzung:
für alle n gilt: [mm] \summe_{k=1}^{n} \bruch{1}{(2k -1 ) (2k +1)}=\bruch{n}{2n+1} [/mm]
Und nun ist der Induktionsschritt:
[mm] n\to [/mm] n+1 (was so viel bedeutet wie: Wenn es für n gilt, dann gilt es auch für n+1; und genau das, sollst du jetzt zeigen).

> erhalte
>  [mm]\summe_{k=1}^{2} \bruch{1}{(2k -1 ) (2k +1)}[/mm] +  
> [mm]\bruch{1}{(2k -1 ) (2k +1)}[/mm] = [mm]\bruch{n}{2n+1}[/mm]
>  n= 2 eingesetzt:
>  [mm]\summe_{k=1}^{2} \bruch{1}{3}[/mm] +  [mm]\bruch{1}{3}[/mm] =
> [mm]\bruch{2}{5}[/mm]

Wenn du n=2 berechnen möchtest, erhältst du Folgendes:
[mm] \summe_{k=1}^{2} \bruch{1}{(2k -1 ) (2k+1)}=\bruch{1}{3}+\bruch{1}{(2*2-1)(2*2+1)}=\bruch{1}{3}+\bruch{1}{3*5}=\bruch{5}{15}+\bruch{1}{15}=\bruch{6}{15}=\bruch{2}{5}=\bruch{2}{2*2+1} [/mm]
und somit stimmt die Aussage wieder. :-)

> Daraus folgt doch, dass die Behauptung nur für n= 1 gilt
> und ansonsten falsch ist. Oder habe ich da irgendwo nen
> Gedankenfehler?

Wenn die Aufgabenstellung so gegeben ist, musste da ja irgendwo ein Fehler drin sein, sonst würde es ja keinen Sinn machen. ;-)

Ist jetzt alles klar?
Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Vollständige Induktion: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Di 08.02.2005
Autor: acosybear

Hallo Bastiane,

eben ist es mir wie Schuppen von den Augen gefallen. Vielen Dank für Deine Antwort.

Ich habe den Fehler gemacht, dass sich bei der Summe k hochzählt und nicht n.

Viele Grüße
oli


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]