matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - Vollständige Induktion
Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 13.10.2007
Autor: LisaRuby

Aufgabe
Beweise folgenden Satz mit dem Beweisverfahren der vollständigen Induktion:
[mm] 1^4+2^4+3^4+...+k^4 [/mm] = 1/30k [mm] (k+1)(2k+1)(3k^2+3k-1) [/mm]

Beim Schluss von k auf k+1 habe ich Probleme.

Induktionsannahme:
[mm] 1^4+2^4+3^4+...+k^4=1/30k(k+1)(2k+1)(3k^2+3k-1) [/mm]
Induktionsbehauptung: (k+1 für k einsetzen
[mm] 1^4+2^4+3^4+...+(k+1)^4=1/30(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)^2+3(k+1)-1) [/mm]

Schluss von k auf k+1
[mm] 1^4+2^4+3^4+...+k^4 [/mm] = 1/30 k [mm] (k+1)(2k+1)(3k^2+3k-1) /+(k+1)^4 [/mm]
                                       = 1/30 [mm] (2k^3+k^2+2k^2+k)(3k^2+3k-1) [/mm] + [mm] k^4 +2k^3+k^2+2k^3+4k^2+2k+k^2+2k+1 [/mm]
              = 1/30 [mm] (6k^5+16k^4+14k^3+6k^2+3k+1) [/mm]

Hier komme ich nun leider nicht weiter...

=1/30 [mm] (12k^5+84k^4+226k^3+290k^2+156k+60) [/mm]
= 1/30 [mm] (12k^5+24k^4+10k^3+24k^4+48k^3+20k^2+36k^4+72k^3+30k^2+72k^3+144k^2+60k+24k^3+48k^2+20+48k^2+96k+40 [/mm]
= 1/30 [mm] (2k^3+4k^2+6k^2+12k+4k+8)(6k^2+12k+5) [/mm]
= 1/30 [mm] (k^2+3k+2)(2k+4)(3k^2+6k+3+3k^2+6k+2) =1/30(k+1)(k+2)(2k+4)(3(k^2+2k+1)+3(k^2+2k+1)-1) [/mm]
[mm] 1^4+2^4+...+(k+1)^4=1/30(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)^2+3(k+1)-1 [/mm]

Meine Frage:
Stimmt das soweit oder bin ich auf dem falschen Weg?

Liebe Grüße,
Lisa                                      



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Sa 13.10.2007
Autor: leduart

Hallo
ich würd aus dem Schritt erstmal (k+1) bei dem behaupteten und dem aus Ind Vors. berechneten ausklammern.
Dann einfach beide Ausdrücke ausrechnen, und zeigen, dass sie gleich sind.
meist gibt es auch noch nen Weg, geschickt auszuklammern, aber da man den oft nicht sieht, nur das offensichtliche ausklammern und dann stur nach Potenzen geordnet ausrechnen.
Gruss leduart

Bezug
        
Bezug
Vollständige Induktion: Noch nen Tipp.
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 13.10.2007
Autor: M.Rex

Hallo

Nur so ein Tipp: Manchmal hilt es, das Ziel zu kennen, deswegen macht es meistens sinn, den Endterm, auf den du für k+1 kommen willst, ausumultiplizieren.
ALso hier:

[mm] \buch{1}{30}(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)²+3(k+1)-1) [/mm]
[mm] =\bruch{1}{30}(k+1)(k+2)(2k+3)(3k²+6k+1+3k-2) [/mm]
[mm] =\bruch{1}{30}(k²+3k+2)(2k+3)(3k²+9k-1) [/mm]
[mm] =\bruch{1}{30}(2k³+9k²+13k+6)(3k²+9k-1) [/mm]
[mm] =\bruch{1}{30}(6k^{5}+18k^{4}-2k³+27k^{4}+81k³-9k²+16k³+117k²-13k+18k²+54k-6) [/mm]
[mm] =\bruch{1}{30}(6k^{5}+45k^{4}+95k³+126k²-13k+41k-6) [/mm]

Und wenn du jetzt

[mm] \underbrace{1^{4}+2^{4}+...+k^{4}}_{=\bruch{1}{30}k(k+1)(2k+1)(3k^2+3k-1),I.V}+(k+1)^{4} [/mm]
[mm] =\bruch{1}{30}k(k+1)(2k+1)(3k^2+3k-1)+(k+1)^{4} [/mm]

Ausmultiplizierst, solltest du auf das obere ausmultiplizierte kommen.

Marius


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 So 14.10.2007
Autor: LisaRuby

Aufgabe
$ [mm] \buch{1}{30}(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)²+3(k+1)-1) [/mm] $
$ [mm] =\bruch{1}{30}(k+1)(k+2)(2k+3)(3k²+6k+1+3k-2) [/mm] $

Ich habe eine Frage zu diesem Schritt
$ [mm] \buch{1}{30}(k+1)((k+1)+1)(2(k+1)+1)(3(k+1)²+3(k+1)-1) [/mm] $
$ [mm] =\bruch{1}{30}(k+1)(k+2)(2k+3)(3k²+6k+1+3k-2) [/mm] $

Ich hätte 3(k+1)-1
anders ausgerechnet, nämlich 3k+3-1 also 3k+2
Kann mir jemand vielleicht helfen?
Danke!

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 So 14.10.2007
Autor: leduart

Hallo
Du hast recht, Rex hat sich verrechnet oder verschrieben.
es muss 3k+2 heissen.
Gruss leduart

Bezug
                        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 So 14.10.2007
Autor: Martinius

Hallo,

da ist noch ein Fehler beim Ausmultiplizieren passiert.

[mm] \bruch{1}{30}[(k+1)(k+2)(2k+3)(3(k+1)^{2}+3(k+1)-1)] [/mm]

= [mm] \bruch{1}{30}[(k+1)(k+2)(2k+3)(3k^{2}+9k+5)] [/mm]


LG, Martinius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]