matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:50 Mi 25.04.2007
Autor: Ernie

Aufgabe
Hallo Leute!
Hab da nen "kleines" Problem mit ner Induktion.
Hoffe ihr könnt mir helfen.

Also:

Es sei     f(x)= [mm] (1+x)^a [/mm]   mit [mm] \betrag{x}<1 [/mm]  und  [mm] n\in\IN [/mm]

Beweise mittels vollständiger Induktion:


[mm] \bruch{f^n(x)}{n!}= \vektor{a \\ n}(1+x)^{a-n}. [/mm]

Der Induktionsanfang is klar. Habe Probleme beim Induktionsschluss, dabei kann ich den Term nicht so Umformen, dass die Behauptung für n+1 schtimmt.

Also danke für eure Hilfe.

LG Ernie

ich habe diese Frage in keinem anderen Forum gestellt.

Hallo Leute!
Hab da nen "kleines" Problem mit ner Induktion.
Hoffe ihr könnt mir helfen.

Also:

Es sei     f(x)= [mm] (1+x)^a [/mm]   mit [mm] \betrag{x}<1 [/mm]  und  [mm] n\in\IN [/mm]

Beweise mittels vollständiger Induktion:


[mm] \bruch{f^n(x)}{n!}= \vektor{a \\ n}(1+x)^{a-n}. [/mm]

Der Induktionsanfang is klar. Habe Probleme beim Induktionsschluss, dabei kann ich den Term nicht so Umformen, dass die Behauptung für n+1 schtimmt.

Also danke für eure Hilfe.

LG Ernie



        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 25.04.2007
Autor: angela.h.b.


> Also:
>  
> Es sei     f(x)= [mm](1+x)^a[/mm]   mit [mm]\betrag{x}<1[/mm]  und  [mm]n\in\IN[/mm]
>  
> Beweise mittels vollständiger Induktion:
>  
>
> [mm]\bruch{f^n(x)}{n!}= \vektor{a \\ n}(1+x)^{a-n}.[/mm]
>  
> Der Induktionsanfang is klar. Habe Probleme beim
> Induktionsschluss, dabei kann ich den Term nicht so
> Umformen, dass die Behauptung für n+1 schtimmt.

Hallo,

es wäre nun extrem hilfreich, wenn wir sehen könnten, was Du bereits gerechnet hast...
Nur so können wir wissen, ob Du etwas falsch gemacht hast, oder ob Dir nur ein kleiner Dreh für eine Umformung fehlt.

Gruß v. Angela



Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Mi 25.04.2007
Autor: Ernie

Hey,

danke für Deine Reaktion.

Also:


Habe auf der linken Seite für n gleich n+1 gesetzt.

Damit erhält man:

[mm] \bruch{f^{n+1} (x)}{(n+1)!} =\bruch{f^{n} (x)f(x)}{(n)!(n+1)}. [/mm]

Da heißt doch nun, dass ich die rechte Seite
mit  [mm] \bruch{f(x)}{(n+1)} [/mm] multiplizieren muss.

Also:

[mm] \bruch{f^ {n}(x)f(x)}{(n)!(n+1)}= \vektor{a\\ n}(1+x)^{a-n}\bruch{f(x)}{(n+1)} [/mm]    mit    f(x) = [mm] \vektor{a\\ n}(1+x)^{a-n} [/mm]    folgt:



[mm] \bruch{f^ {n}(x)f(x)}{(n)!(n+1)}= \vektor{a\\ n}(1+x)^{a-n}\bruch{1}{(n+1)}\vektor{a\\ n}(1+x)^{a-n}. [/mm]

Und wie komm ich jetzt auf

[mm] \bruch{f^{n+1} (x)}{(n+1)!} [/mm] = [mm] \vektor{a\\( n+1)}(1+x)^{a-(n+1)} [/mm] , was die Aussage ja beweisen würde ???
                  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]