matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Induktion von Ungleichung
Status: (Frage) überfällig Status 
Datum: 16:13 Fr 03.11.2006
Autor: MichiNes

Aufgabe
Es seien a1, a2, ...., an > 0 mit [mm] a1\*a2\*....\*an [/mm] = 1. Beweisen Sie mittels vollständiger Induktion die Ungleichung

[mm] \bruch{a1+a2+a3+.....+an}{n} \ge [/mm] 1

und diskutieren Sie den Fall der Gleichheit.

Hallo!!

Also irgendwie steh ich bei der Aufgabe hier aufm Schlauch. Ich hab gar kein Ansatz.
Kann mir vielleicht jemand hier einen Tipp geben, der mich auf den richtigen Weg bringt??

Vielen Dank im Voraus

Grüße
Michi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Fr 03.11.2006
Autor: Walde

Hi Michael,

ich muss sagen, ich bin hier auch überfragt. Grundsätzlich macht man ja bei Induktion einen Anfang und einen Schritt. Der Anfang wäre leicht, einfach n=1 nehmen, einsetzen (man hat dann [mm] a_1=1), [/mm] dann ist der Anfang schon fertig.
Beim Schritt geht man davon aus, dass die Beh. für n gezeigt ist und zeigt sie dann für n+1.
Was mich beim Schritt aber verwirrt ist, dass die [mm] a_i [/mm] sich ja verändern (können),also das [mm] a_1 [/mm] für n=1 muss bei n=2 nicht mehr dasselbe sein. z.B. für n=2: [mm] a_1=\bruch{2}{3}, a_2=\bruch{3}{2} [/mm] erfüllen die Behauptung, ohne dass man beim Ind.Schritt verwenden könnte,dass a1=1 war für n=1.
Allgemeiner formuliert. Man kann meiner Meinung nach weder [mm] a_1+\ldots+a_n\ge [/mm] n, noch [mm] a_1*\ldots*a_n=1 [/mm] verwenden, um die Beh. für n+1 zu zeigen.
Aber vielleicht hast du ja hierdurch schon einen Denkanstoss bekommen, der dich weiter bringt und es gibt ja auch noch viele andere hier im Forum, die vielleich ne Idee haben. Vielleicht hab ich ja auch ein Brett vorm Kopf. Also viel Erfolg noch,

l G walde

Bezug
        
Bezug
Vollständige Induktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Mi 08.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]