matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:24 Do 12.10.2006
Autor: crash24

Aufgabe
Zeigen Sie mit vollständiger Induktion:


[mm]\forall n\in\IN : \summe_{k=1}^{n} k\left( k+1 \right) = \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm]

Der Ablauf der vollständigen Induktion ist mir eigentlich ganz klar. Ich habe aber sehr große Probleme mit Termumformungen und mit dem Auflösen von Klammern. Daher komme ich beim Induktionsschluss teilweise nicht weiter.

Hier sind meine Ansätze:

Induktionsverankerung:  [mm] n=1[/mm]

[mm] \summe_{k=1}^{1} k\left( k+1 \right) = 2 = \bruch{1}{3}*1 \left( 1+1\right) \left( 1+2 \right) = 2 [/mm]

Für [mm]n=1[/mm] gilt die Aussage

Induktionsschritt:
                            
Induktionssannahme:
                            
Es gibt ein beliebiges [mm] n\in\IN [/mm] für das die Aussage wahr ist, d.h. das

[mm] \summe_{k=1}^{n} k\left( k+1 \right) = \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm]

gilt.

Induktionssschluss:

z. zeigen:

[mm] \summe_{k=1}^{n+1} k\left( k+1 \right) = \bruch{1}{3}\left( n+1\right) \left(\left( n+1\right)+1\right) \left( \left( n+1\right)+2 \right) [/mm]

Betrachte:

[mm] \summe_{k=1}^{n+1} k\left( k+1 \right) = \summe_{k=1}^{n} k\left( k+1 \right) + \left( n+1\right) \left( \left( n+1\right)+2 \right) [/mm]

[mm] = \bruch{1}{3}n\left( n+1\right) \left( n+2\right) +\left( \left(n+1\right)\left( n+1\right)+ 2\right) [/mm]                         // [mm]\bruch{1}{3}[/mm] ausklammern

[mm] = \bruch{1}{3}\left(n\left( n+1\right) \left( n+2\right) +3\left( \left(n+1\right)\left( n+1\right)+ 2\right)\right) [/mm]

Leider komme ich jetzt nicht mehr so recht weiter.
Vielleicht kann mir ja jemand helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:58 Do 12.10.2006
Autor: Bastiane

Hallo!

Ich glaube, diese Aufgabe gibt es hier im Forum schon irgendwo. Gib doch mal in der Suche "vollständige Induktion" oder auch einfach nur "Induktion" ein. Da findest du ganz viel, und wenn du das mal alles durchguckst, findest du bestimmt auch deine Aufgabe. :-)

Viele Grüße und [gutenacht]
Bastiane
[cap]


Bezug
        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Do 12.10.2006
Autor: Walty

Ich habe es als einfacher empfunden, die Zahlen gleich zusammenzuiehen. Deine Formeln mit mehreren klammern werden leicht unübersichtlich...



ausgehend von: (Induktionsannahme)
[mm]\summe_{k=1}^{n} k\left( k+1 \right) = \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm]

ist (induktion)
[mm]\summe_{k=1}^{n+1} k\left( k+1 \right) = \bruch{1}{3}\left( n+1\right) \left(\left( n+1\right)+1\right) \left( \left( n+1\right)+2 \right)= \bruch{1}{3}\left( n+1\right) \left( n+2\right) \left( n+3 \right) [/mm]

es ist also
[mm]\summe_{k=1}^{n+1} k\left( k+1 \right) = \summe_{k=1}^{n} k\left( k+1 \right) + \left( n+1 \right)*\left(n+2\right) [/mm]
unte der Induktionsannahme kan man ersetzen:

[mm] \summe_{k=1}^{n+1} k\left( k+1 \right) [/mm] = [mm] \bruch{1}{3}n \left( n+1\right) \left( n+2 \right) [/mm] + [mm] \left( n+1 \right)*\left(n+2\right) [/mm]  [/mm]
hier wird das Ausklammern schon offensichtlicher ;-)
= [mm] \left( n+1\right) \left( n+2 \right) (\bruch{1}{3}n+1) [/mm]
= [mm] \bruch{1}{3}\left( n+1\right) \left( n+2 \right)(n+3) [/mm]

qed

hth Walty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]