matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Vollständige Induktion
Vollständige Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Problem bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:25 So 07.05.2006
Autor: Alex999H

Aufgabe
Zeigen Sie mittels vollständiger Induktion, dass für alle n>=24 aus Kombinationen von 5 und 7 zusammengesetzt werden können.

Hallo,

Ich kann zwar folgende Gleichung aufstellen:
n = 5a + 7b für alle n [mm] \in [/mm] N.

Aber irgendwie komme ich dann mit der Induktion einfach nicht weiter.
Es wäre nett, wenn mir jemand einen Ansatz für die Aufgabe geben könnte.

Gruß,
Alex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 So 07.05.2006
Autor: topotyp

Was sind a,b denn? Ganze Zahlen oder natürliche?
Schätze mal dass das nicht unwesentlich ist, oder?
Für ganze Zahlen ist das eine Spezialfall des Bezoutlemmas das
man mit dem Euklid Algorithmus bekommt.
In deinem Fall ist es elementar wie folgt zum Bsp.:
n -> n+5 , n-> n+7 sind klare Induktionsschritte
Schreibe 1=5x+7b mit x,y fest (suche dir was)
dann ist n=5a+7b -> n+1 = 5a+7b+5x+7y=5(a+x)+7(b+y).
Das zeigt den Induktionsschluss. Fktn. aber nur wenn wie gesagt
deine a,b in der Darstellung beliebige ganze Zahlen sein dürfen.
Gruss topotyp

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:54 So 07.05.2006
Autor: Alex999H

Danke für deine schnelle Antwort.

a und b sind natürliche Zahlen.

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Mo 08.05.2006
Autor: Terror-Teddy

Da du ja logischerweise nur natürliche Zahlen einsetzen darfst, musst du nach Einsetzen des Induktionsanfangs n = 24 von (n+1) bis (n+5) die vollständige Induktion durchführen. z.B. für n + 2:

n + 2 = n + (-1 * 5 + 1 * 7)

Einsetzen der Vorbedingung:

= 5a + 5b + (-1 * 5 + 1 * 7) = 5 * (a-1) + 7 * (b+1)

Vereinfacht kannst du natürlich auch einfach die Zahlen von 1 bis 5 als Kombination von 5 und 7 darstellen, wobei doe Vorfaktoren nicht kleiner als (-2) sein dürfen, da 24 = 2*5 + 2*7

Ab (n+6) wiederholt sich alles von neuem,  da (n+6) = (n+5) +1, wobei die Darstellung von 5 durch 5 und 7 keine negativen Vorfaktoren enthält, nämlich 1*5 + 0*7

Bezug
                                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Mo 08.05.2006
Autor: Alex999H

topotyp hatte seine Antwort unter der Bedingung gegeben, dass a und b ganze Zahlen sind. Allerdings sind a und b natürliche Zahlen. Funktioniert das dann genauso?
Um das ganze nochmal zu konkretisieren: es soll gezeigt werden, dass man mit 5 und 7 jede natürliche Zahl >= 24 bilden kann.

n = 5a + 7b war nur mein Ansatz, kann auch sein, dass der falsch ist.

Bezug
                                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Mo 08.05.2006
Autor: Terror-Teddy

oha, jetzt ist die dritte Frage mit der zweiten Antwort beantwortet worden, ich hoffe das gibt keinen Stress mit den Admins ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]