matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Vollständige Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Vollständige Induktion
Vollständige Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: binomische Formel
Status: (Frage) beantwortet Status 
Datum: 03:51 Mo 30.01.2006
Autor: picca

Aufgabe
Beweise durch vollständige Induktion, dass die binomische Formel für alle n gültig ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hab mir bereits diesen Thread durchgelesen:
https://matheraum.de/read?t=112452&v=t
Soweit ist mir das generelle Vorgehen auch klar, nur habe ich ab dem Teil Probleme:
$ [mm] \summe_{k=0}^{n+1} \vektor{n \\ k-1 }\cdot{}a^{n+1-k}\cdot{}b^k [/mm] + [mm] \summe_{k=0}^{n+1} \vektor{n \\ k }\cdot{}a^{n+1-k}\cdot{}b^k [/mm] $

So verstehe ich das: Beim rechten Teil setze ich n+1 für k ein, dann erhalte ich als Summand 0. Dh also, ich kann ihn gleich weglassen und nur von k=0 bis n aufsummieren.
Beim linken Teil starte ich mit k=0 und erhalte als Summand auch 0, dh ich kann hier gleich von k=1 bis n+1 aufsummieren.
Den Index muss ich wohl nur bei der linken Summe verschieben, da ich das n+1 wegbekommen will. Also verschiebe ich den Index, und summiere also von k=0 bis n. Da ich k um 1 erniedrigt habe, muss ich das in der Summe selbst ausgleichen, deshalb schreibe ich nun k+1 statt k.
Jetzt das erste Problem: Ich verändere doch auch das n, wieso muss ich also das n innerhalb der Summe nicht auch angleichen?
Das Herausziehen eines a aus der rechten Summe ist kein Problem, ich ziehe es vor und kann somit statt [mm] a^{n+1-k} [/mm] nun [mm] a^{n-k} [/mm] schreiben.
Da ich in der linken Seite k durch k+1 ersetzt habe, steht dort nun [mm] b^{k+1} [/mm]
Ich ziehe ein b vor die Summe und erhalte wieder [mm] b^k [/mm]
Wie wird aber aus dem [mm] a^{n+1-k} [/mm] ein [mm]a^{n-k}[/mm]  Liegt es daran, dass ich auch hier k durch k+1 ersetze, und sich die 1 somit wegsubtrahiert?
Vielen Dank.



        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mo 30.01.2006
Autor: Julius

Hallo picca!

>  Soweit ist mir das generelle Vorgehen auch klar, nur habe
> ich ab dem Teil Probleme:
> [mm]\summe_{k=0}^{n+1} \vektor{n \\ k-1 }\cdot{}a^{n+1-k}\cdot{}b^k + \summe_{k=0}^{n+1} \vektor{n \\ k }\cdot{}a^{n+1-k}\cdot{}b^k[/mm]
>  
> So verstehe ich das: Beim rechten Teil setze ich n+1 für k
> ein, dann erhalte ich als Summand 0. Dh also, ich kann ihn
> gleich weglassen und nur von k=0 bis n aufsummieren.

[ok]

>  Beim linken Teil starte ich mit k=0 und erhalte als
> Summand auch 0, dh ich kann hier gleich von k=1 bis n+1
> aufsummieren.

[ok]

> Den Index muss ich wohl nur bei der linken Summe
> verschieben, da ich das n+1 wegbekommen will. Also
> verschiebe ich den Index, und summiere also von k=0 bis n.
> Da ich k um 1 erniedrigt habe, muss ich das in der Summe
> selbst ausgleichen, deshalb schreibe ich nun k+1 statt k.

[ok]

> Jetzt das erste Problem: Ich verändere doch auch das n,
> wieso muss ich also das n innerhalb der Summe nicht auch
> angleichen?

Nein, du "änderst" nur das $k$. Mache dir das Vorgehen mal an einem einfachen Beispiel klar:

[mm] $\sum\limits_{k=1}^n k^2 [/mm] = [mm] 1^2 [/mm] + [mm] 2^2 [/mm] + [mm] \ldots n^2 [/mm] = [mm] \sum\limits_{k=0}^{n-1} (k+1)^2$. [/mm]

> Das Herausziehen eines a aus der rechten Summe ist kein
> Problem, ich ziehe es vor und kann somit statt [mm]a^{n+1-k}[/mm]
> nun [mm]a^{n-k}[/mm] schreiben.

[ok]

>  Da ich in der linken Seite k durch k+1 ersetzt habe, steht
> dort nun [mm]b^{k+1}[/mm]

[ok]

>  Ich ziehe ein b vor die Summe und erhalte wieder [mm]b^k[/mm]
>  Wie wird aber aus dem [mm]a^{n+1-k}[/mm] ein [mm]a^{n-k}[/mm]  Liegt es
> daran, dass ich auch hier k durch k+1 ersetze, und sich die
> 1 somit wegsubtrahiert?

Genau daran liegt es. :-)

Eigentlich hast du alles verstanden... :-)

Liebe Grüße
Julius


Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Mo 30.01.2006
Autor: picca

Vielen Dank Julius :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]