matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVollst. Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Vollst. Induktion
Vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 12.12.2005
Autor: wenbockts

Kann mir jemnd bei dieser Aufgabe mit einem Ansatz weiter helfen? LG

Sei f :  [mm] \IR \to \IR [/mm] beliebig oft differenzierbar und [mm] g(x)=f(e^x). [/mm] Zeigen
Sie mit Hilfe der vollständigen Induktion, dass gilt
[mm] g^{(n)}(x)=\summe_{k=1}^{n} a_{n,k} f^{(k)}(e^x)*e^{kx} [/mm]
Drücken Sie die Koeffizienten [mm] a_{n+1,1}, a_{n+1,2}, [/mm] . . . , [mm] a_{n+1,k+1} [/mm] durch die Koeffizienten
[mm] a_{n,1} [/mm] , . . ., [mm] a_{n,k} [/mm] aus.

        
Bezug
Vollst. Induktion: Problem? ... Hinweis
Status: (Antwort) fertig Status 
Datum: 08:36 Di 13.12.2005
Autor: Loddar

Hallo wenbockts!


Wo genau liegen denn Deine Probleme?

Das ist doch (fast ;-) ) eine vollständige Induktion wie jede andere.


Für die Ableitung von $g(x)_$ bzw. $f(x)_$ gilt gemäß MBKettenregel:

$g'(x) \ = \ [mm] \left[ \ f(e^x) \ \right]' [/mm] \ = \ [mm] f'(e^x)*e^x$ [/mm]


Für die weiteren Ableitungen (also beim Induktionsschritt) kommt nun noch die MBProduktregel dazu.


Gruß
Loddar


Bezug
                
Bezug
Vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 So 18.12.2005
Autor: wenbockts

Aufgabe
Siehe oben..

Ich versteh halt immer noch net so genau was ich da eigentlich beweisen soll.. diese Summenschreibweise bringt mich immer ganz durcheinander...

Bezug
                        
Bezug
Vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 So 18.12.2005
Autor: leduart

Hallo wen
Erst mal für [mm] g'=g^{(1)} [/mm] zeigen dass die Formel gilt.
als nächstes annehmen, dass sie für n gilt, dann diese Formel ableiten, und zeigen, dass sie die Formel für n+1 ergibt.  dabei werden die [mm] a_{n,k} [/mm] mit Faktoren versehen und heissen dann [mm] a_{n+1,k}. [/mm]
Wenn du mit dem Summenzeichen nicht umgehen kannst schreibs erst mal mit Pünktchen, das ist eigentlich das gleiche, aber am Anfang für viele einfacher.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]