matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Vollst. Indukt. Umformungsprob
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Vollst. Indukt. Umformungsprob
Vollst. Indukt. Umformungsprob < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollst. Indukt. Umformungsprob: Erklärung
Status: (Frage) beantwortet Status 
Datum: 20:24 Di 16.09.2014
Autor: EinKiloMehl

Aufgabe
Siehe Fragentext.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Wenn ich jetzt den gesamten Aufgabentext abtippe, sitze ich morgen noch dran und mir ist immernoch nicht geholfen, darum also nun in Kurzform: Es geht um einen Beweis mittels vollständiger Induktion. An sich verstehe ich sie, jedoch bin ich bei einer Lösung einer Aufgabe mir unklar, wie dieser Teil der Umformung funktioniert hat: Präzise geht es um folgendes: [mm] \bruch{a^{n}-1}{a-1} [/mm] + [mm] a^{n} [/mm] = [mm] \bruch{a^{n}-1+a^{n+1}-a^{n}}{a-1}. [/mm] Wie kommt [mm] a^{n} [/mm] auf den gemeinsamen Teiler a-1?

        
Bezug
Vollst. Indukt. Umformungsprob: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Di 16.09.2014
Autor: DieAcht

Hallo,


Es gilt:

      [mm] a^n=a^n*1=a^n*\left(\frac{a-1}{a-1}\right) [/mm] für alle [mm] a\not=1. [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Vollst. Indukt. Umformungsprob: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 Di 16.09.2014
Autor: EinKiloMehl

Dankeschön, ich weiß nun Bescheid

Bezug
        
Bezug
Vollst. Indukt. Umformungsprob: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Di 16.09.2014
Autor: Marcel

Hallo,

> Siehe Fragentext.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Wenn ich jetzt den gesamten Aufgabentext abtippe, sitze ich
> morgen noch dran und mir ist immernoch nicht geholfen,
> darum also nun in Kurzform: Es geht um einen Beweis mittels
> vollständiger Induktion. An sich verstehe ich sie, jedoch
> bin ich bei einer Lösung einer Aufgabe mir unklar, wie
> dieser Teil der Umformung funktioniert hat: Präzise geht
> es um folgendes: [mm]\bruch{a^{n}-1}{a-1}[/mm] + [mm]a^{n}[/mm] =
> [mm]\bruch{a^{n}-1+a^{n+1}-a^{n}}{a-1}.[/mm] Wie kommt [mm]a^{n}[/mm] auf den
> gemeinsamen Teiler a-1?

detailliert hat es DieAcht ja schon gesagt. Aber mal nach dem Motto "in der
Kürze liegt die Würze":
Brüche addiert man, indem man sie nennergleich macht.

Beachte dabei, dass jedes $r [mm] \in \IR$ [/mm] auch als Bruch geschrieben werden kann:

    [mm] $r=\frac{r}{1}$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]