matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVoll. Induktion - Fakultät
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Voll. Induktion - Fakultät
Voll. Induktion - Fakultät < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Voll. Induktion - Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:08 Do 01.12.2011
Autor: flo_87

Aufgabe
Beweisen Sie mithilfe der vollständigen Induktion:

3 * 3! + 4 * 4! + ... + n * n! = (n + 1)!-6

Hey, guten Morgen.
Ich komme bei dieser Aufgabe am Ende nicht weiter. Ich hoffe es kann mir jemand helfen?

Habe die vollständige Induktion mal soweit durchgeführt, wie ich konnte:
Im Induktionsschluss muss ich ja zeigen, dass die Gleichung mit n+1 funktioniert:

3 * 3! + 4 * 4! + ... + n * n! + (n+1) * (n+1)! = (n + 2)!-6
(n+1)! - 6 + (n+1) * (n+1)! = (n+2)! - 6      | +6
(n+1)! + (n+1) * (n+1)! = (n+2)!

Und nun weiß ich nicht, wie ich die linke Seite weiter vereinfachen soll, sodass ich beweisen kann, dass beide Seiten gleich sind.
Die Fakultät bereitet mir da ein bisschen Probleme.

Kann mir hier bitte jemand weiterhelfen?
Schonmal vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

gruss Florian

        
Bezug
Voll. Induktion - Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 07:26 Do 01.12.2011
Autor: luis52

Moin flo_87,

[willkommenmr]


Zu zeigen ist also [mm] $\sum_{i=3}^ni [/mm] i!=(n+1)!-6$. Die Behauptung ist offenbar richtig fur $n=3$ (das musst du ueberpruefen!). Sie gelte fuer $n_$.

Es ist nach IV

[mm] $\sum_{i=3}^{n+1}i i!=\sum_{i=3}^{n}i [/mm] i!+(n+1)(n+1)!=(n+1)!-6+(n+1)(n+1)!=(n+1)!(n+2)-6=(n+2)!-6$.

vg Luis

Bezug
                
Bezug
Voll. Induktion - Fakultät: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 Do 01.12.2011
Autor: flo_87

Hey, vielen dank für deine schnelle Antwort !!!

(n+1)! - 6 + (n+1) (n+1)! = -6 + (n+2) (n+1)!
Dieser Schritt war mir die ganze Zeit unklar. Hab jetzt die Fakultät einfach mal mit einem beliebigen n ausgeschrieben. Also zb mit n=2:
- 6 (3*2*1) + 3 (3*2*1)

und dann ist mir erst klar geworden wie du auf (n+2) kommst. Die Fakultät (n+1)! kommt ja zweimal vor und kann einmal gestrich werden, wenn man sie einfach einmal mehr multipliziert. Deswegen (n+2).

Die Fakultät hat mich bei der Aufgabe ein bisschen durcheinander gebracht. Jetzt hab ich es aber verstanden.

dankeschön!!!
gruss flo...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]