matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVol. sich schneidender Kugeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Vol. sich schneidender Kugeln
Vol. sich schneidender Kugeln < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vol. sich schneidender Kugeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Mo 07.08.2006
Autor: phalaenopsis

Hallo,

ich soll das Volumen von 2 sich schneidenden Kugeln ausrechnen und komme an einer Stelle nicht weiter:

Ich habe zwei Kugeln mit den Mittelpunkten M1 und M2 und zwei dazugehoerige Kugelradien r1 und r2. Die Distanz der Mittelpunkte sei d.

Die Oberflaechen der Kugeln schneiden sich in einem Kreis mit dem Kreisradius r. Dieser Kreisradius entspricht der Hoehe im Dreieck d,r1,r2.

Mittels r sollte ich nun das Volumen des Kugelabschnittes ausrechnen koennen, mittels folgender Formel:

Volumen Kugelabschnitt = [mm] (\pi/6) [/mm] * h * [mm] (3*r^{2} [/mm] + [mm] h^{2}) [/mm]

Nun habe ich gelesen, dass die
Hoehe des groesseren Kugelabschnitts = Kugelradius + [mm] \wurzel{Kugelradius^{2}-r^{2}} [/mm]

und die
Hoehe des kleineren Kugelabschnitts = Kugelradius - [mm] \wurzel{Kugelradius^{2}-r^{2}} [/mm]

ist.

Nun bin ich leider etwas verwirrt, welchen Kugelradius ich in diese Formel einsetzen soll, da ich ja 2 Kugeln habe (oder mache ich das Prozedere fuer beide) und welchen Term ich jetzt von der Summe der Volumen beider Kugeln als gemeinsamen Durchschnitt subtrahiere.

Ich hoffe, jemand von Euch kann mir weiterhelfen.
Schon mal ein dickes Dankeschoen fuer Eure Hilfe!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vol. sich schneidender Kugeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Mo 07.08.2006
Autor: riwe

hallo orchidee,
mach dir doch ein bilderl, dann löst sich die verwirrung auf
[mm] h_1+h_2=d [/mm]
und mit pythagoras
[mm] h_1^{2}= r_1^{2}-r^{2} [/mm]

[mm] h_2^{2}= r_2^{2}-r^{2} [/mm]
unabhängig davon, ob du mit [mm] r_1 [/mm] (oder [mm] r_2) [/mm] den größeren oder kleineren radius bezeichnest.
und das ganze procedere mal 2!

Bezug
                
Bezug
Vol. sich schneidender Kugeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Mo 07.08.2006
Autor: phalaenopsis

Hallo Riwe,

also, mit dem Bild bin ich schon ein bischen "entwirrter" aber leider noch nicht ganz ;-)

Wenn ich nun h1 und h2 mittels Pythagoras berechnet habe, rechne ich dann zweimal die Volumen eines Kugelabschnittes aus, also:

[mm] (\pi/6)*h_{1}*(3*r^{2}+h_{1}^{2}) [/mm]
und
[mm] (\pi/6)*h_{2}*(3*r^{2}+h_{2}^{2}) [/mm]

und subtrahiere diese beiden Volumen dann vom gemeinsamen Volumen beider Kugeln?
Wenn ja, bin ich dann fertig?
Wenn nein: Gott bin ich verwirrt... ;-)

Liebe Gruesse nach Oesterreich!

Bezug
                        
Bezug
Vol. sich schneidender Kugeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 07.08.2006
Autor: riwe

ja jetzt verstehe ich deine verwirrung;  habe mir mal die formel angeschaut!

aber dein weg ist eh richtig, bis auf:
[mm] h_1\rightarrow r_1-h_1 [/mm]
[mm] h_2\rightarrow r_2-h_2 [/mm]
oder
[mm] h_1\rightarrow r_1+h_1 [/mm]
[mm] h_2\rightarrow r_2+ h_2 [/mm]
dann ersparst du dir die zusätzliche berechnung der beiden kugelvolumina
und mußt nur die beiden kugelabschnittvolumina zusammenzählen.
damit es nicht ganz undurchsichtig wird oder bleibt, habe ich dir ein bilderl dazu gemalt.
ich hoffe, daraus wird alles klar(er).
(h ist das h in deiner formel, also die höhe des kugelabschnittes, und [mm] h_1 [/mm] berechnest du!)

[Dateianhang nicht öffentlich]







Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]