matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesVielfachheit und
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Vielfachheit und
Vielfachheit und < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vielfachheit und: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Mi 16.03.2011
Autor: kushkush

Aufgabe
4. Berechne das charakteristische Polynom und die Eigenwerte von [mm] $A=\vektor{0&1&0 \\ 0&0&0 \\ 0&0&1}$ [/mm] in [mm] $M_{\IR}(3)$. [/mm]

i) Berechne die Vielfachheiten
ii) Ist A diagonalisierbar?

Hallo


das charak. Poly. ist : [mm] $\lambda^{2}-\lambda^{3}$ [/mm]


Die Eigenwerte sind [mm] $\lambda_{1/2}=0; \lambda_{3}=1$ [/mm] .

i) Zwei doppelte Eigenwerte also beträgt die Vielfachheit 2 ?

ii) Basiselemente der Eigenräume: [mm] \vektor{0\\0\\1}, \vektor{1\\0\\0}, \vektor{0\\0\\0}$ [/mm]

also ist A diagonalisierbar.

Ich habe diese Fragen in keinem anderen Forum gestellt.


Danke und Gruss

kushkush

        
Bezug
Vielfachheit und: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mi 16.03.2011
Autor: kamaleonti

Hallo kushkush,
> 4. Berechne das charakteristische Polynom und die
> Eigenwerte von [mm]A=\vektor{0&1&0 \\ 0&0&0 \\ 0&0&1}[/mm] in
> [mm]M_{\IR}(3)[/mm].
>
> i) Berechne die Vielfachheiten
>  ii) Ist A diagonalisierbar?
>  Hallo
>  
>
> das charak. Poly. ist : [mm]\lambda^{2}-\lambda^{3}[/mm]
>
>
> Die Eigenwerte sind [mm]\lambda_{1/2}=0; \lambda_{3}=1[/mm] . [ok]
>
> i) Zwei doppelte Eigenwerte also beträgt die Vielfachheit
> 2 ?

Gemeint ist wohl algrebraische / geometrische Vielfalt.
Die algebraische hast du bereits bestimmt (das ist die Anzahl, wie oft eine bestimmte Nullstelle im charakt. Polynom auftritt).
Die geometrische ist die Dimension der jeweiligen Eigenräume (das passiert unten). Sie ist hier jeweils 1.

>  
> ii) Basiselemente der Eigenräume: [mm]\vektor{0\\0\\1}, \vektor{1\\0\\0}, \vektor{0\\0\\0}$[/mm]

[notok] der Vektor [mm] (0,0,0)^T [/mm] ist nie Bestandteil einer Basis und immer linear abhängig.
Damit fällt noch ein Basiselement weg und es folgt ...

>  
> also ist A diagonalisierbar.

... das Gegenteil hiervon.

>
> Ich habe diese Fragen in keinem anderen Forum gestellt.
>  
>
> Danke und Gruss
>  
> kushkush

LG

Bezug
                
Bezug
Vielfachheit und: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Mi 16.03.2011
Autor: kushkush

Hallo kamaleonti,




Danke !



Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]