matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVerwirrendes Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Verwirrendes Integral
Verwirrendes Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verwirrendes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 So 16.03.2014
Autor: lannigan2k

Hallo,

kann mir jemand hier helfen. Ich hab das Integral

[mm] \integral_{x=-1}^{1}{x dx^2} [/mm]

wie berechnet man das?

geht das mit substitution?

danke?

        
Bezug
Verwirrendes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 So 16.03.2014
Autor: Richie1401

Hallo,

hier ist dein Maß nicht das gewöhnliche, wie man es kennt.

Es handelt sich hier um ein Riemann-Stieltjes INtegral. Es gilt dabei:

   Sei [mm] \mu(x) [/mm] stetig differenzierbar. Dann [mm] \integral_{a}^{b}{f(x) d\mu(x)}=\integral_{a}^{b}{f(x)\mu'(x) dx} [/mm]

Bezug
                
Bezug
Verwirrendes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 So 16.03.2014
Autor: lannigan2k

a und b ändern sich nicht?

(danke für die schnelle antwort)

Bezug
                        
Bezug
Verwirrendes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 16.03.2014
Autor: Richie1401


> a und b ändern sich nicht?

a und b ändern sich nicht.

>  
> (danke für die schnelle antwort)


Bezug
                        
Bezug
Verwirrendes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 So 16.03.2014
Autor: Marcel

Hi,

> a und b ändern sich nicht?
>  
> (danke für die schnelle antwort)

Du substituierst ja nicht den Integranden, sondern "sozusagen" die
Integrationsvariable. (Die aber schon in der substituierten Form in [mm] $f(x)=x\,$ [/mm]
steckt - da steht ja nicht sowas wie [mm] "$f(x^2)=...$") [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Verwirrendes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 So 16.03.2014
Autor: Marcel

Hallo,

siehe auch []http://de.wikipedia.org/wiki/Stieltjesintegral#Nicht-monotone_Integratoren:

> Hallo,
>  
> kann mir jemand hier helfen. Ich hab das Integral
>  
> [mm]\integral_{x=-1}^{1}{x dx^2}[/mm]

Du könntest auch partiell integrieren (nach der entsprechenden Formel,
siehe Link):

    [mm] $\int_{-1}^1 xdx^2=1*1^2-(-1)*(-1)^2-\int_{-1}^1 [/mm] x^2dx=...$

Das ist deswegen gut, weil mit [mm] $f(x)=x\,$ [/mm] dann [mm] $df(x)=dx\,$ [/mm] wird...

P.S. Ansonsten ist die "Substitutionsidee" formal auch nicht schlecht:

    [mm] $dx^2/dx=2x$ [/mm] liefert formal

    [mm] $dx^2=2xdx$ [/mm]

Damit bist Du dann bei Richies Formel...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]