matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVerwinkeltes (Geometrie)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Verwinkeltes (Geometrie)
Verwinkeltes (Geometrie) < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verwinkeltes (Geometrie): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:56 Sa 28.01.2006
Autor: dartrax

Hallo,
ich habe folgendes Problem, von dem ich noch nicht mal weiß, unter welche Rubrik es gehört (bitte ggf. verschieben). Es ist für ein Programm für dreidimensionale Fraktale, das ich für Informatik programmiere, hat also nichts mit meinem Matheunterricht zu tun.

[Dateianhang nicht öffentlich]

Vorgeschichte:
Es geht allgemein darum, einen Ortsvektor, der durch eine Neigung und eine Drehung im Raum (Polarkoordinaten oder so) definiert ist, zu drehen, und zwar unter Angabe des Winkels der Drehachse und der Neigung.
Ich knobel' nun schon das zweite Wochenende daran herum und dachte eben, nun hätt' ich's endlich (das wäre dann die 5. Lösung. Die 4. habe ich in mein Programm eingebaut, sie ist aber unvollständig, ich hoffe der Lehrer merkt's nicht, wir mussten nämlich schon abgeben ;-) )
Ich bin soweit gekommen, dass ich mein Problem auf diese konkrete Aufgabenstellung reduzieren konnte.

Das Problem:
Winkel [m]\alpha[/m] und [m]\beta[/m] sind angegeben. Daraus soll Winkel [m]\gamma[/m] berechnet werden. Unter Vorgabe eine neuen Neigung [m]\delta[/m] für [m]\gamma[/m] sollen dann die neuen Werte für [m]\alpha[/m] und [m]\beta[/m] berechnet werden.

Mein Ansatz:
Als ich darauf gekommen bin, hab' ich sofort mit Pytagoras und Sinus bzw. Cosinus losgelegt und hinterher festgestellt, dass das gar nicht geht. Denn: Wenn [m]\beta[/m] 90° ist und [m]\delta[/m] verändert wird, wird sich nach der Zeichnung [m]\gamma[/m] nicht verändern! In meinem Pythagoras-Versuch ([m]\gamma[/m] = Hypothenuse, [m]\alpha[/m] und [m]\beta[/m] = Katheden) tut es das natürlich. Danach habe ich mich an dieses Forum erinnert und dachte, das wär' doch was für euch ;-)

dartrax

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Verwinkeltes (Geometrie): Wikipedia?
Status: (Antwort) fertig Status 
Datum: 14:43 Mo 30.01.2006
Autor: informix

Hallo dartrax,
[willkommenmr]

> Hallo,
>  ich habe folgendes Problem, von dem ich noch nicht mal
> weiß, unter welche Rubrik es gehört (bitte ggf.
> verschieben).

hier bist du schon richtig.

> Es ist für ein Programm für dreidimensionale
> Fraktale, das ich für Informatik programmiere, hat also
> nichts mit meinem Matheunterricht zu tun.
>  
> [Dateianhang nicht öffentlich]
>  
> Vorgeschichte:
>  Es geht allgemein darum, einen Nullvektor, der durch eine
> Neigung und eine Drehung im Raum (Polarkoordinaten oder so)
> definiert ist, zu drehen, und zwar unter Angabe des Winkels
> der Drehachse und der Neigung.
>  Ich knobel' nun schon das zweite Wochenende daran herum
> und dachte eben, nun hätt' ich's endlich (das wäre dann die
> 5. Lösung. Die 4. habe ich in mein Programm eingebaut, sie
> ist aber unvollständig, ich hoffe der Lehrer merkt's nicht,
> wir mussten nämlich schon abgeben ;-) )
>  Ich bin soweit gekommen, dass ich mein Problem auf diese
> konkrete Aufgabenstellung reduzieren konnte.
>  
> Das Problem:
>  Winkel [m]\alpha[/m] und [m]\beta[/m] sind angegeben. Daraus soll Winkel
> [m]\gamma[/m] berechnet werden. Unter Vorgabe eine neuen Neigung
> [m]\delta[/m] für [m]\gamma[/m] sollen dann die neuen Werte für [m]\alpha[/m]
> und [m]\beta[/m] berechnet werden.
>  
> Mein Ansatz:
>  Als ich darauf gekommen bin, hab' ich sofort mit Pytagoras
> und Sinus bzw. Cosinus losgelegt und hinterher
> festgestellt, dass das gar nicht geht. Denn: Wenn [m]\beta[/m] 90°
> ist und [m]\delta[/m] verändert wird, wird sich nach der Zeichnung
> [m]\gamma[/m] nicht verändern! In meinem Pythagoras-Versuch
> ([m]\gamma[/m] = Hypothenuse, [m]\alpha[/m] und [m]\beta[/m] = Katheden) tut es
> das natürlich. Danach habe ich mich an dieses Forum
> erinnert und dachte, das wär' doch was für euch ;-)
>  

Kennst du Matrizen? Insbesondere Drehmatrizen?
schau mal bei Wikipedia nach, ich könnte mir vorstellen, dass du dort fündig werden kannst.

Was verstehst du übrigens unter einem Nullvektor? In der Mathematik ist [mm] $\vec{0} [/mm] $ ein richtungsloser Vektor der Länge 0; aber den meinst du bestimmt nicht, oder?

Gruß informix


Bezug
                
Bezug
Verwinkeltes (Geometrie): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:42 Di 31.01.2006
Autor: dartrax

Hallo Informix,
danke für deine Antwort!

Ich habe Nullvektor mit Ortsvektor verwechselt und habe dies gerade verbessert.

Matrizen haben wir noch gar nicht gehabt in Mathe. Ich schau' es mir aber in den nächsten Tagen mal an.

Außerdem habe ich mit einem Lehrer geredet, der meinte, es gäbe dafür die "Kugelgeometrie" und zum Beispiel die Dreiecksberechnung an der Kugel (die, wie ich gemerkt habe, völlig anders ist - dort kann z. B. ein Dreieck aus drei 90°-Winkel bestehen!). Damit sollte ich mich also beschäftigen. Wer mir dazu Tipps geben kann oder Fachbegriffe, wonach ich suchen muss, nur zu!

dartrax

Bezug
                        
Bezug
Verwinkeltes (Geometrie): Frage beantwortet, hier Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:52 So 05.02.2006
Autor: dartrax

Ich bin jetzt zu einer Lösung gekommen und werde sie für alle Interessierten hier eingeben.

Das Stichwort lautet Kugelgeometrie, noch genauer: sphärische Trigonometrie. Da geht es um die Berechnungen von Dreiecken auf Kugeln, die ganzen Formeln finden sich []hier bei Wikipedia.

Ich habe speziell für die obige Aufgabenstellung folgende Formel aufgestellt:

  [mm] \gamma [/mm] = [mm] \cos^{-1}(\cos(\beta) \* \cos(\alpha)) [/mm]
  [mm] \delta [/mm] = [mm] \sin^{-1}(\bruch{\sin(\alpha)}{\sin(\gamma)}) [/mm] + [mm] \delta' [/mm]

  [mm] \alpha' [/mm] = [mm] \sin^{-1}(\sin(\delta) \* \sin(\gamma)) [/mm]
  [mm] \beta' [/mm] = [mm] \tan^{-1}(\bruch{\cos(\delta)}{\cot(\gamma)}) [/mm]

Einziges Problem: Durch die ganzen Brüche, Sinus, Cosinus und Tangens-Funktionen kann es unter bestimmten Werten zu Divisionen durch 0 oder anderen mathematischen Fehlern kommen (oder die Formel ist falsch). Außerdem wird darüber hinaus besonders im Zusammenhang mit [mm] \beta [/mm] gerne mal das Vorzeichen "vergessen" und [mm] \beta' [/mm] ist plötzlich gegenläufig.

Wie informix schon gesagt hat, sind eigentlich Drehmatrizen auf solche Probleme "zugeschnitten", und deshalb werde ich mich jetzt erstmal damit auseinandersetzen, bevor ich weiter versuche, hier das Rad neu zu erfinden.

dartrax


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]