matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVerträglichkeitsbedingungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Verträglichkeitsbedingungen
Verträglichkeitsbedingungen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verträglichkeitsbedingungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:58 Mi 12.05.2010
Autor: lubalu

Aufgabe
V ist ein K-Vektorraum mit (V,+) abelsche Gruppe und den Verträglichkeitsbedingungen [mm] (a,b\in [/mm] K und [mm] v,w\in [/mm] V):
1. (a+b)v=av+bv
2. [mm] (a\*b)\*v=a\*(b\*v) [/mm]
3. [mm] 1\*v=v [/mm]
4. [mm] a\*(v+w)=av+aw [/mm]

Hallo.

Also, ich soll in der Prüfung erklären können, wenn eine der Bedingungen dasteht, ob die Summe/das Produkt aus V oder K ist. Bitte korrigieren, wenn was falsch ist:
1. (a+b)v=av+bv => [mm] (a+b)\in [/mm] K; [mm] (a+b)v\in [/mm] V; [mm] av\in [/mm] V; bv [mm] \in [/mm] V; av+bv [mm] \in [/mm] V
2. [mm] (a\*b)\*v=a\*(b\*v) [/mm] => [mm] a\*b\in [/mm] K; [mm] (a\*b)\*v\in [/mm] V; [mm] b\*v\in [/mm] V; [mm] a\*(b\*v)\in [/mm] V
3. [mm] 1\*v=v [/mm] => klar
4. [mm] a\*(v+w)=av+aw [/mm] => [mm] v+w\in [/mm] V; [mm] a\*(v+w)\in [/mm] V; [mm] av\in [/mm] V; [mm] aw\in [/mm] V; [mm] av+aw\in [/mm] V.

Jetzt hat der Prüfer in der Vorbesprechung gesagt, er kann auch sowas hinschreiben:

[mm] (K,+,\*) [/mm] Körper mit
Addition [mm] \oplus: [/mm] K x K [mm] \to [/mm] K
Multiplikation  [mm] \odot: [/mm] K x K [mm] \to [/mm] K
und dann z.B. [mm] (a\oplus b)\*v=av+bv. [/mm]
Was muss ich hier besonders beachten? Oder sind die Regeln wie oben? Was ist der Unterschied zwischen der normalen Multiplikation und [mm] \odot [/mm] und der normalen Addition und [mm] \oplus? [/mm]


        
Bezug
Verträglichkeitsbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 12.05.2010
Autor: statler

Hi!

> V ist ein K-Vektorraum mit (V,+) abelsche Gruppe und den
> Verträglichkeitsbedingungen [mm](a,b\in[/mm] K und [mm]v,w\in[/mm] V):
>  1. (a+b)v=av+bv
>  2. [mm](a\*b)\*v=a\*(b\*v)[/mm]
>  3. [mm]1\*v=v[/mm]
>  4. [mm]a\*(v+w)=av+aw[/mm]

> Also, ich soll in der Prüfung erklären können, wenn eine
> der Bedingungen dasteht, ob die Summe/das Produkt aus V
> oder K ist. Bitte korrigieren, wenn was falsch ist:
>  1. (a+b)v=av+bv => [mm](a+b)\in[/mm] K; [mm](a+b)v\in[/mm] V; [mm]av\in[/mm] V; bv

> [mm]\in[/mm] V; av+bv [mm]\in[/mm] V
>  2. [mm](a\*b)\*v=a\*(b\*v)[/mm] => [mm]a\*b\in[/mm] K; [mm](a\*b)\*v\in[/mm] V;

> [mm]b\*v\in[/mm] V; [mm]a\*(b\*v)\in[/mm] V
>  3. [mm]1\*v=v[/mm] => klar

>  4. [mm]a\*(v+w)=av+aw[/mm] => [mm]v+w\in[/mm] V; [mm]a\*(v+w)\in[/mm] V; [mm]av\in[/mm] V;

> [mm]aw\in[/mm] V; [mm]av+aw\in[/mm] V.

[ok]

> Jetzt hat der Prüfer in der Vorbesprechung gesagt, er kann
> auch sowas hinschreiben:
>  
> [mm](K,+,\*)[/mm] Körper mit

s. u.

> Addition [mm]\oplus:[/mm] K x K [mm]\to[/mm] K
>  Multiplikation  [mm]\odot:[/mm] K x K [mm]\to[/mm] K
>  und dann z.B. [mm](a\oplus b)\*v=av+bv.[/mm]
>  Was muss ich hier
> besonders beachten? Oder sind die Regeln wie oben? Was ist
> der Unterschied zwischen der normalen Multiplikation und
> [mm]\odot[/mm] und der normalen Addition und [mm]\oplus?[/mm]

Hier bist du immer im Körper K unterwegs, es gibt nur diese eine Menge, in der herumgerechnet wird. Aber es geht um einen abstrakten Körper K. Die Addition [mm] \oplus [/mm] hat daher mit der Add. + in den reellen Zahlen nix zu tun.

Oben muß es deswegen korrekt [mm] (K,\oplus,\odot) [/mm] heißen.

Gruß aus HH-Harburg
Dieter

>  


Bezug
                
Bezug
Verträglichkeitsbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Mi 12.05.2010
Autor: lubalu

Also es gibt nix besonderes zu beachten, nur, dass alle Ergebnisse, die ich rausbringe auch aus K sind?
Aber wenn ich nur +: K x K [mm] \to [/mm] K als Addition und [mm] \*: [/mm] K x K [mm] \to [/mm] K als Multiplikation definiere, ist es doch auch so,oder?
Was ist dann das Besondere an [mm] \oplus [/mm] und [mm] \odot? [/mm] Hat das was mit der direkten Summe wie bei UVR zu tun?

Bezug
                        
Bezug
Verträglichkeitsbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Mi 12.05.2010
Autor: fred97


> Also es gibt nix besonderes zu beachten, nur, dass alle
> Ergebnisse, die ich rausbringe auch aus K sind?
>  Aber wenn ich nur +: K x K [mm]\to[/mm] K als Addition und [mm]\*:[/mm] K x
> K [mm]\to[/mm] K als Multiplikation definiere, ist es doch auch
> so,oder?

Ja


>  Was ist dann das Besondere an [mm]\oplus[/mm] und [mm]\odot?[/mm] Hat das
> was mit der direkten Summe wie bei UVR zu tun?

Nein, das sind nur Bez. für die Addition bzw. Multiplikation

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]