matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Verteilungsfunktionen
Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 16.06.2005
Autor: Mathi123

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo, kann mir jemand eine Lösung zu dieser Aufgabe geben?

Aufgabe: Bestimmen Sie die Verteilungsfunktion F: R [mm] \to [/mm] [0, 1] (d.h. die durch F(x) = P((− [mm] \infty, [/mm] x]) festgelegte Funktion)
a) einer Gleichverteilung auf [0, 1].
b) einer exp( [mm] \lambda)–Verteilung. [/mm]
Bestimmen Sie auch die Ableitung dieser Funktionen.

        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Do 16.06.2005
Autor: Julius

Hallo!

Wieso versuchst du denn nicht hier wenigstens mal ein paar eigene Ansätze anzubieten? Ich meine du kennst die Definition, so dass der Rest Schulniveau ist (Integrale ausrechnen).

Naja, ich bin mal wieder zu gutmütig und rechne es vor.

Im ersten Fall ist offenbar

$f(t)= [mm] 1_{[0,1]}(t)$ [/mm]

die Dichte der Gleichverteilung. Daher gilt:

$F(x) = [mm] \int\limits_{-\infty}^x 1_{[0,1]}(t)\, [/mm] dt = [mm] \left\{ \begin{array}{ccc} 0 & , & x<0 \\[5pt] \int\limits_0^x 1\, dt = x & , & 0 \le x \le 1,\\[5pt] 1 & , & x>1. \end{array} \right.$ [/mm]

Im zweiten Fall ist

$f(t)= [mm] \lambda e^{-\lambda t} \cdot 1_{[0,1]}(t)$ [/mm]

die Dichte der Exponentialverteilung. Daher gilt:

$F(x) = [mm] \int\limits_{-\infty}^x \lambda e^{-\lambda t} \cdot 1_{[0,1]}(t)\, [/mm] dt = [mm] \int\limits_0^x \lambda e^{-\lambda t}\, [/mm] dt = [mm] \left[ -e^{-\lambda t} \right]_{t=0}^{t=x} [/mm] = 1 - [mm] e^{-\lambda x}$. [/mm]

Durch Ableiten bekommt man natürlich die Dichten wieder zurück.

Viele Grüße
Julius

Bezug
                
Bezug
Verteilungsfunktionen: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Sa 18.06.2005
Autor: Mathi123

Sers´
danke für die Hilfe. Sorry, dass ich die eigenen Ansätze nicht hingeschrieben habe. Bin noch neu hier. Tue mich sehr schwer mit der Definition der Verteilungsfunktion.
Nochmals vielen Dank.
Grüße Mathi.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]