matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieVerteilungsfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Verteilungsfunktionen
Verteilungsfunktionen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Fr 22.02.2008
Autor: Riley

Hallo,
folgendes Problem:
Die Zufallsvariable U ist gleichverteilt auf (0,1), X ist eine weitere Zufallsvariable mit stetiger und streng monoton wachsender Verteilungsfunktion F.
Nun betrachten wir die Zufallsvariable [mm] F^{-1}U([a,b)):= F^{-1}(U([a,b))). [/mm]

Warum hat dann [mm] F^{-1}U [/mm] die gleiche Verteilungsfunktion wie F ?

Wie kann ich das einsehen?
Gilt dann P(X [mm] \leq [/mm] x) = [mm] F_X(x) [/mm] = [mm] P(F^{-1}U \leq [/mm] u)... ??

Viele Grüße,
Riley



        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Fr 22.02.2008
Autor: luis52

Moin Riley,

Ich zeige, dass [mm] $F^{-1}(U)$ [/mm] dieselbe Verteilung hat wie $X$ (nicht $F$).
Beachte zunaechst, dass die Verteilungsfunktion von $U$ gegeben ist durch
$G(u)=u$ fuer $0<u<1$.

Sei [mm] $x\in\IR$ [/mm] gegeben. Dann ist

[mm] $P(F^{-1}(U)\le x)=P(U\le [/mm] F(x))=F(x)$.


Also hat  [mm] $F^{-1}(U)$ [/mm]  dieselbe Verteilungsfunktion wie $X$.

vg
Luis              

Bezug
                
Bezug
Verteilungsfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Fr 22.02.2008
Autor: Riley

Moin Luis,
besten Dank für deine Erklärung, ich bin wirklich am Schlauch gehängt. Braucht man die Vss dass die Verteilungsfkt von X stetig und strg monoton ist nur dafür, dass  [mm] F^{-1} [/mm] ex.? und warum ist F(x) [mm] \in [/mm] (0,1) ?

Viele Grüße,
Riley

PS: wie lebt es sich eigentlich auf der Weihnachtsinsel? :)

Bezug
                        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:41 Sa 23.02.2008
Autor: luis52


> Braucht man die Vss dass die
> Verteilungsfkt von X stetig und strg monoton ist nur dafür,
> dass  [mm]F^{-1}[/mm] ex.?


Ja, so wird die Argumentation leichter. Tatsaechlich gilt die Aussage
allgemeiner.


> und warum ist F(x) [mm]\in[/mm] (0,1) ?

[mm] $F(x)=P(X\le [/mm] x)$, booah ;-)

>  

> PS: wie lebt es sich eigentlich auf der Weihnachtsinsel? :)

Festlich.

vg Luis


Bezug
                                
Bezug
Verteilungsfunktionen: danke :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Sa 23.02.2008
Autor: Riley

Hi Luis,

okay, sorry *ops*  aber vielen Dank!

Viele Grüße,
Riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]