matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsfunktion und Dichte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Verteilungsfunktion und Dichte
Verteilungsfunktion und Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion und Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 So 29.03.2009
Autor: Joey42

Aufgabe
Seien Y,T unabhängige Zufallsvariablen mit P(Y=1) = P(Y=-1) = 1/2 und T = [mm] Exp(\lambda), [/mm] wobei [mm] \lambda>0. [/mm] Setze X:=YT.

a) Bestimmen Sie die Verteilungsfunktion Fx von X und zeigen Sie, dass durch
f(x) = [mm] \bruch{\lambda}{2} exp(-\lambda|x|), [/mm] x [mm] \in \IR [/mm]
eine Dichte von X gegeben ist.

b) Berechnen Sie Erwartungswert E(X) und die Varianz Var(X) von X.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen ich steh gerade total auf dem Schlauch,

könnte mir evtl jemand sage wie ich a) angehen sollte?

Ist die Dichte nicht das Integral von f ?

Muss ich mir aus den gegeben Werten eine Funktion aufstellen und diese integrieren um zu zeigen das sie gleich dem gegeben f(x) ist ?

Ich hoffe jemand findet Zeit mich in die richtige Richtung zu schubsen.





        
Bezug
Verteilungsfunktion und Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 So 29.03.2009
Autor: vivo

Hallo,

> Seien Y,T unabhängige Zufallsvariablen mit P(Y=1) = P(Y=-1)
> = 1/2 und T = [mm]Exp(\lambda),[/mm] wobei [mm]\lambda>0.[/mm] Setze X:=YT.

Also ist [mm]X:= \pm T[/mm]

die ZV's sind unabhängig, dann haben wir:

[mm]F(x)=\bruch{1}{2}(1-e^{-\lambda |x|})[/mm]

als W.keitsverteilung, die Ableitung hiervon ist dann die Dichte.

> a) Bestimmen Sie die Verteilungsfunktion Fx von X und
> zeigen Sie, dass durch
> f(x) = [mm]\bruch{\lambda}{2} exp(-\lambda|x|),[/mm] x [mm]\in \IR[/mm]
> eine Dichte von X gegeben ist.
>  
> b) Berechnen Sie Erwartungswert E(X) und die Varianz Var(X)
> von X.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo zusammen ich steh gerade total auf dem Schlauch,
>
> könnte mir evtl jemand sage wie ich a) angehen sollte?
>  
> Ist die Dichte nicht das Integral von f ?
>  
> Muss ich mir aus den gegeben Werten eine Funktion
> aufstellen und diese integrieren um zu zeigen das sie
> gleich dem gegeben f(x) ist ?
>  
> Ich hoffe jemand findet Zeit mich in die richtige Richtung
> zu schubsen.
>  
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]