matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastik-SonstigesVerteilungsfunktion, Konvergen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik-Sonstiges" - Verteilungsfunktion, Konvergen
Verteilungsfunktion, Konvergen < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion, Konvergen: Zufallsvariable
Status: (Frage) beantwortet Status 
Datum: 16:01 So 19.04.2015
Autor: Kosamui

Aufgabe
Bestimme die Verteilungsfunktion der Zufallsavriablen [mm] X_{n} [/mm] und finde heraus, ob die Folge für n -> [mm] \infty [/mm] in Verteilung konvergiert. Wenn ja zu welcher Verteilung, wenn nein, was passiert im Limes?

[mm] P(X_{n}=1/k)=1/n, [/mm]      k=1,...,n , n [mm] \in [/mm] N

Hallo,

Die Verteilungsfunktion ist definiert  [mm] F_{X_{n}}(t) [/mm] = P [mm] (X_{n} \le [/mm] t). Für t <0 ist P [mm] (X_{n} \le [/mm] t) = 0, weil dann ja [mm] X_{n} [/mm] null ist.
Und jetzt kommt der Fall, den ich nicht verstehe:  wenn 1 [mm] \le [/mm] t, dann ist P [mm] (X_{n} \le [/mm] t) = 1.
Wieso ist es dann 1??

Und für 1/(d+1) <t< 1/d (wobei d [mm] \in [/mm] N) ist es d/n.

Kann mir wer weiterhelfen? Danke und lg :)

        
Bezug
Verteilungsfunktion, Konvergen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 19.04.2015
Autor: luis52

Moin,

[mm] $X_n$ [/mm] nimmt die Werte [mm] $1/n,\,2/n,\,\dots,\,(n-1)/n,\,n/n=1$ [/mm] an. Dabei ist $1$ der groesste Wert. Folglich ist   [mm] $P(X_{n} \le [/mm] t) = 1$ fuer [mm] $1\le [/mm] t$.

Vielleicht hilft dir das schon auf die Spruenge ...
      

Bezug
                
Bezug
Verteilungsfunktion, Konvergen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 So 19.04.2015
Autor: Kosamui

Wieso nimmt [mm] X_{n} [/mm] die Werte $ [mm] 1/n,\,2/n,\,\dots,\,(n-1)/n,\,n/n=1 [/mm] $
an? Es ist doch $ [mm] P(X_{n}=1/k)=1/n, [/mm] $, wie kommt man da auf $ [mm] 1/n,\,2/n,\,\dots,\,(n-1)/n,\,n/n=1 [/mm] $ ? Müsste es nicht 1/1,1/2,....1/n sein?
Sorry aber ich verstehe es nocht nicht.

LG und danke :)



Bezug
                        
Bezug
Verteilungsfunktion, Konvergen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 So 19.04.2015
Autor: luis52


> Wieso nimmt [mm]X_{n}[/mm] die Werte
> [mm]1/n,\,2/n,\,\dots,\,(n-1)/n,\,n/n=1[/mm]
>  an? Es ist doch [mm]P(X_{n}=1/k)=1/n, [/mm], wie kommt man da auf
> [mm]1/n,\,2/n,\,\dots,\,(n-1)/n,\,n/n=1[/mm] ? Müsste es nicht
> 1/1,1/2,....1/n sein?

Das stimmt, da war ich zu schlampig. Aber   $ [mm] P(X_{n} \le [/mm] t) = 1 $ fuer $ [mm] 1\le [/mm] t $ bleibt auch dann korrekt.

  


Bezug
                                
Bezug
Verteilungsfunktion, Konvergen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 19.04.2015
Autor: Kosamui

okay danke, dann ist das jz klar. Aber wieso ist 1/(d+1) <t< 1/d  im Fall sonst?

LG

Bezug
                                        
Bezug
Verteilungsfunktion, Konvergen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 So 19.04.2015
Autor: luis52


> okay danke, dann ist das jz klar. Aber wieso ist 1/(d+1)
> <t< 1/d  im Fall sonst?

ie Vorgabe $1/(d+1) <t< 1/d$ (wobei  $d [mm] \in [/mm]  N$) ist es $d/n$ macht keinen Sinn.

Korrekturversuch: [mm] $P(X_n\le [/mm] t)=d/n$ fuer [mm] $1/(n+1-d)\le [/mm] t< 1/(n-d)$, [mm] $d=1,2,\dots,n-1$. [/mm]

Zeichne zum besseren Verstaendnis einmal die Verteilungsfunktion z.B. von [mm] $X_4$. [/mm]
                  


Bezug
                                                
Bezug
Verteilungsfunktion, Konvergen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 So 19.04.2015
Autor: Kosamui

Hmm beim zeichnen tu ich mir schwer, weil ich irgendwie noch nicht richtig verstehe wie die Funktion ausschauen sollte. Wenn die x-Achse bei mir [mm] X_{n} [/mm] ist und die y Achse F(t), dann entsteht eine Kurve die mit höherem n abfällt und Richtung null geht.?

Bezug
                                                        
Bezug
Verteilungsfunktion, Konvergen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 So 19.04.2015
Autor: luis52

[mm] $F_{X_4}$ [/mm] ist eine Treppenfunktion mit Stufen der Hoehe [mm] $1/4,\, 2/4,\, 3/4,\,4/4$ [/mm] bei [mm] $x=1/4,\,1/3,\,1/2,\,1$ [/mm] ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]