matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieVerteilungsfunktion/Dichte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Verteilungsfunktion/Dichte
Verteilungsfunktion/Dichte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion/Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mi 13.12.2006
Autor: vicky

Aufgabe
In einem Gerät seien drei gleichartige Bauteile vorhanden, deren Zustand (unabhängig voneinander) die Qualitätsstufen [mm] U_i \in [/mm] {1,2,3,4} mit den Wahrscheinlichkeiten 0.3,0.4,0.2,0.1 besitze (i=1,2,3).

Bestimmen Sie für das Maximum V der beobachteten Qualitäten die Verteilungsfunktion [mm] F^V [/mm] und dann die Z-Dichte [mm] f^V. [/mm]

Geben Sie eine gemeinsame Tabelle an für die Dichten und Verteilungsfunktionen von [mm] U_1 [/mm] und V.

Hallo,

habe leider keine Ahnung was ich genau tun soll. Wäre froh über jede hilfreiche Antwort.

Habe mir überlegt, dass ich ja ein Tripel betrachte [mm] \omega =(\omega_1, \omega_2, \omega_3) [/mm] wobei [mm] \omega_1, \omega_2 [/mm] und [mm] \omega_3 [/mm] verschiedene Qualitätsstufen haben können.  [mm] V(\omega) [/mm] = Maximum aus [mm] \omega_1, \omega_2 [/mm] oder [mm] \omega_3 [/mm] also das [mm] \omega_i, [/mm] i=1,2,3, mit der höchsten Qualitätsstufe.

Doch wie bekomme ich eine Verteilungsfunktion bzw. Dichte?

Beste Grüße
vicky



        
Bezug
Verteilungsfunktion/Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 13.12.2006
Autor: luis52

Hallo Vicky,

du hast schon sehr schoen beschrieben, wie vorzugehen ist. Du musst
[mm] $4^3=64$ [/mm] Tupel betrachten, denen du die jeweiligen Wahrscheinlichkeiten
zuordnen kannst, die sich auf Grund der Unabhaengigkeit der Zustaende
ergeben. So ordnest du dem Tupel (2,4,2) die Wahrscheinlichkeit
$0.4 [mm] \times [/mm] 0.1 [mm] \times [/mm] 0.4=0.016$ zu.  Bestimme nun alle Tupel, wo das
Maximum 1, 2, 3, oder 4 ist und addiere jeweils die Wahrscheinlichkeiten
der zugehoerigen Tupel. *Ich* erhalte fuer die
Wahrscheinlichkeitsfunktion (der Begriff "Dichte" ist hier unangemessen):

$P(V=1)=0.027$, $P(V=2)=0.316$, $P(V=3)=0.386$,  $P(V=4)=0.271$

und $P(V=v)=0$ fuer [mm] $v\ne [/mm] 1,2,3,4$. Hieraus ergibt sich die
Verteilungsfunktion unmittelbar.


Analog verfaehrt man mit [mm] $U_1$: [/mm] Die Wahrscheinlichkeitsfunktion ist

[mm] $P(U_1=1)=0.3$, $P(U_1=2)=0.4$, $P(U_1=3)=0.2$, $P(U_1=4)=0.1$ [/mm] und
[mm] $P(U_1=u)=0$ [/mm] fuer [mm] $u\ne [/mm] 1,2,3,4$.

hth


Bezug
                
Bezug
Verteilungsfunktion/Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mi 13.12.2006
Autor: vicky

Vielen vielen Dank für die Antwort.

Doch eine Frage noch. Wie hast du das so schnell ausgerechnet? Ich muß doch jetzt nicht alle 64 Tupel aufschreiben, davon die Wahrscheinlichkeiten ausrechnen und dann dem jeweiligen Maximum zuordnen und dann zusammen addieren oder?

Gruß und nochmals danke.
vicky

Bezug
                        
Bezug
Verteilungsfunktion/Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mi 13.12.2006
Autor: luis52



> Doch eine Frage noch. Wie hast du das so schnell
> ausgerechnet?


Mit R, siehe


http://cran.r-project.org/

Ich schicke dir mal eine Tabelle mit allen Tupeln und den zugehoerigen
Wahrscheinlichkeiten.

hth

      [,1] [,2] [,3]  [,4] [,5] [,6] [,7]  [,8]
[1,]    1    1    1 0.027    1    1    3 0.018
[2,]    2    1    1 0.036    2    1    3 0.024
[3,]    3    1    1 0.018    3    1    3 0.012
[4,]    4    1    1 0.009    4    1    3 0.006
[5,]    1    2    1 0.036    1    2    3 0.024
[6,]    2    2    1 0.048    2    2    3 0.032
[7,]    3    2    1 0.024    3    2    3 0.016
[8,]    4    2    1 0.012    4    2    3 0.008
[9,]    1    3    1 0.018    1    3    3 0.012
[10,]    2    3    1 0.024    2    3    3 0.016
[11,]    3    3    1 0.012    3    3    3 0.008
[12,]    4    3    1 0.006    4    3    3 0.004
[13,]    1    4    1 0.009    1    4    3 0.006
[14,]    2    4    1 0.012    2    4    3 0.008
[15,]    3    4    1 0.006    3    4    3 0.004
[16,]    4    4    1 0.003    4    4    3 0.002
[17,]    1    1    2 0.036    1    1    4 0.009
[18,]    2    1    2 0.048    2    1    4 0.012
[19,]    3    1    2 0.024    3    1    4 0.006
[20,]    4    1    2 0.012    4    1    4 0.003
[21,]    1    2    2 0.048    1    2    4 0.012
[22,]    2    2    2 0.064    2    2    4 0.016
[23,]    3    2    2 0.032    3    2    4 0.008
[24,]    4    2    2 0.016    4    2    4 0.004
[25,]    1    3    2 0.024    1    3    4 0.006
[26,]    2    3    2 0.032    2    3    4 0.008
[27,]    3    3    2 0.016    3    3    4 0.004
[28,]    4    3    2 0.008    4    3    4 0.002
[29,]    1    4    2 0.012    1    4    4 0.003
[30,]    2    4    2 0.016    2    4    4 0.004
[31,]    3    4    2 0.008    3    4    4 0.002
[32,]    4    4    2 0.004    4    4    4 0.001  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]