matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Verteilungsfunktion
Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Fr 12.06.2009
Autor: gigi

Aufgabe
Gegeben sei eine differenzierbare und nicht konstante Funktion [mm] g:(\infty,\infty) \to (\infty,\infty) [/mm] und A und B als reelle Konstanten.
1.Untersuchen Sie, unter welchen Bedingungen an g, A und B die Funktion F(x):=A arctan(g(x))+B eine Verteilungsfunktion ist.
2. Geben Sie die Bedingungen dafür an, dass die Verteilungsfunktion F auf [a,b] konzentriert ist.

1. es muss folgendes erfüllt sein: monoton wachsend(1), die Grenzwerte 1 und 0(2), rechtsstetig (3)
zu (1) habe ich mir überlegt: g(x) monoton wachsend, A positiv, B beliebig oder g(x) mon.fallend, A negativ, B beliebig. Stimmt das?
bei (2) hab ich leider keine Ahnung!
zu (3): Aus der Differenzierbarkeit von g(x) folgt Stetigkeit für g(x) und da arctan stetig ist, auch Stetigkeit für F(x), damit erst recht rechtsstetigkeit.
2. F müsste dann außerhalb des Intervalls entweder 0 oder 1 sein, oder? Aber wie finde ich dafür die Bedingungen?

Ich wäre sehr dankbar für Korrekturen+ Ergänzungen!

Tschau.

        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Fr 12.06.2009
Autor: abakus


> Gegeben sei eine differenzierbare und nicht konstante
> Funktion [mm]g:(\infty,\infty) \to (\infty,\infty)[/mm] und A und B
> als reelle Konstanten.
> 1.Untersuchen Sie, unter welchen Bedingungen an g, A und B
> die Funktion F(x):=A arctan(g(x))+B eine
> Verteilungsfunktion ist.
>  2. Geben Sie die Bedingungen dafür an, dass die
> Verteilungsfunktion F auf [a,b] konzentriert ist.
>  1. es muss folgendes erfüllt sein: monoton wachsend(1),
> die Grenzwerte 1 und 0(2), rechtsstetig (3)

Hallo,
idealerweise wäre [mm] \limes_{x\rightarrow-\infty}arctan(g(x))=0 [/mm] und [mm] \limes_{x\rightarrow+\infty}arctan(g(x))=1. [/mm]
Leider tut uns das Biest nicht den Gefallen und hat irgendwelche anderen Grenzwerte, z.B.
[mm] \limes_{x\rightarrow-\infty}arctan(g(x))=c [/mm] und [mm] \limes_{x\rightarrow+\infty}arctan(g(x))=d [/mm]
Jetzt müssen A und B so gewählt werden, dass aus c Null und aus d Eins wird.
Also A*c+B=0 und A*d+B=1
Das ist der Fall, wenn A=1/(d-c) und B=-c(d-c) ist.
Gruß Abakus

>  zu (1) habe ich mir überlegt: g(x) monoton wachsend, A
> positiv, B beliebig oder g(x) mon.fallend, A negativ, B
> beliebig. Stimmt das?
>  bei (2) hab ich leider keine Ahnung!
>  zu (3): Aus der Differenzierbarkeit von g(x) folgt
> Stetigkeit für g(x) und da arctan stetig ist, auch
> Stetigkeit für F(x), damit erst recht rechtsstetigkeit.
>  2. F müsste dann außerhalb des Intervalls entweder 0 oder
> 1 sein, oder? Aber wie finde ich dafür die Bedingungen?
>  
> Ich wäre sehr dankbar für Korrekturen+ Ergänzungen!
>  
> Tschau.


Bezug
                
Bezug
Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Sa 13.06.2009
Autor: gigi

Morgen und besten Dank!

Kann ich das, was ich mir bei (1) und (3) überlegt habe etwa so lassen??

Und fällt jemandem was zu dem [a,b] in 2. ein??

Gruß und Danke

Bezug
                        
Bezug
Verteilungsfunktion: Kommentar
Status: (Antwort) fertig Status 
Datum: 07:39 So 14.06.2009
Autor: Infinit

Hallo gigi,
die Punkte zu 1) sind schon okay so, wenn sie die Verteilungsfunktion in dem angegebenen Intervall konzentrieren soll, so muss doe Funktion für Werte kleiner a o sein und für Werte größer b 1 sein, sonst wäre es keine Verteilungsfunktion mehr.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]