matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieVerteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Verteilungsfunktion
Verteilungsfunktion < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:56 Mo 01.09.2008
Autor: myro

Aufgabe
G(1)= 1/Sqrt(2*Pi)  * [mm] \integral_{-\infty}^{1}{ e^{-t^2/2} dt} [/mm]
Fläche von - [mm] \infty [/mm] bis [mm] \infty [/mm] ist gleich 1. Berechnen Sie näherungsweise G(1) mithilfe des Taylorpolynoms 2. Grades.  Als Lösung ist 1/2 + 1/Sqrt(2Pi) angegeben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich hab jetzt erstmal das Taylorpolynom mit Entwicklungspunkt t0 = 0 entwickelt, weil ich keine Ahnung habe, welchen Wert ich bei soviel Auswahl nehmen könnte:
Tayloplynom:
[mm] e^{-t^2/2} [/mm] = 1 - [mm] t^2/2 [/mm]
und erhalte nun nach Integration:
1/Sqrt(2Pi)* [mm] (t-t^3/6) [/mm] | von [mm] -\infty [/mm] bis 1
->
const* [(1-1/6) - [mm] \limes_{c\rightarrow-\infty}c-c^3/6] [/mm]
nur geht jetzt, der Grenzwert gegen [mm] -\infty [/mm] (mit minus davor dann gegen [mm] +\infty) [/mm] beides ist nicht wirklich hilfreich, da die Fläche ja laut Ergebnis kovergiert.

Die einzige Lösung die ich mir zusammenreimen kann, ist dass die Glockenkurve ja auf beiden Seiten gleich ausschaut und somit die Fläche von [mm] -\infty [/mm] bis 0 = 1/2 hinzu kommt noch das Stück von 0 bis 1: 5/6* 1/Sqrt(2Pi) wodurch ich eine Gesamtfläche von 1/2 + 5/6 *1/Sqrt(2Pi) bekomme, was ja seeehr ungefähr das Ergebnis darstellt.
Ist die Fläche über das Taylorplynom nicht so einfach berechenbar (wieso divergiert das bei mir?), oder habe ich einen falschen Entwicklungspunkt gewählt? Der 2. Ansatz war mehr geraten, nachdem ich das Ergebnis angeschaut hatte, mittlerweile denk ich aber, dass die Aufgabe so gedacht war...

        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Mo 01.09.2008
Autor: Teufel

Hallo!

Mir scheint die Lösung nicht ganz zu stimmen. Und dass
[mm] \bruch{1}{\wurzel{2*\pi}}*\integral_{-\infty}^{0}{e^{\bruch{x^2}{2}} dx}=\bruch{1}{2} [/mm] ist, kann man hier gut verwenden.

Denn diese Parabel 2. Grades nähert nur die Funktion um den Entwicklungspunkt 0 gut an. Wenn du dir die Parabel im unendlichen anguckst, geht sie ja gegen [mm] -\infty, [/mm] der Graph der eigentlichen Integrandenfunktion geht aber gegen 0, wodurch ja der endliche Flächeninhalt (das bestimmte Integral) von [mm] \bruch{1}{2} [/mm] zustande kommt.

Von daher kannst du mit deiner Näherung nur um 0 arbeiten.
Den Entwicklungspunkt bei 0 zu setzen war schon gut, damit kommt man der eigentlichen Lösung schon sehr nahe (0,2 unterschied).

Die Lösung ist also etwas ungenau.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]