matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieVerteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Verteilungsfunktion
Verteilungsfunktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:05 Mo 03.12.2018
Autor: Thomas_Aut

Hallo,

in der Sachversicherungsmathematik kann man den erwarteten Endschaden eines Jahres durch ein 'Frequency-Severity' Modell berechnen.
Das bedeutet, dass man von den Schadenshöhen [mm] $X_i$ [/mm] und von der zufälligen Schadenanzahl $N$ die Verteilung bestimmt und damit die Verteilung der Summe
$ S= [mm] \sum_{i=1}^{N}X_{i}$ [/mm]

man muss natürlich voraussetzen, dass für alle $i$ $N$ und [mm] $X_{i}$ [/mm] stochastisch unabhängig sind.
Häufig ist $N [mm] \sim Poi(\lambda)$ [/mm] und [mm] $X_{i} \sim [/mm] Gamma(a,b)$.
In dieser Zusammensetzung kann man die Verteilung von $S$ auch ganz gut analytisch bestimmen, da sich die Gammaverteilung gut falten lässt - in vielen anderen Fällen gibt es keine geschlossene Darstellung der Verteilungsfunktion.

Ich habe ein Python Package gefunden, dass einem gegebenen Datensatz die Verteilung anpasst - interessanterweise werden zumeist keine "üblichen Verteilungen" gewählt, sondern relativ exotische - für die Verteilung der Großschäden (beispielsweise alle Schäden > 100000 Eur.) findet man in der Literatur meistens die Annahme einer Lognormal oder Pareto Verteilung... in der Anpassung wird allerdings die LogLaplace genommen (Der Datensatz stammt allerdings aus einer realen Versicherung, also er ist nicht exotisch).

Für die Frequenzschäden wird es allerdings ziemlich problematisch - also alles von 0.01Eur bis 70.000Eur aufwärts ... hier findet sich folgender Output:

C:\Users\zw878qa\Desktop\Capture.PNG

Was natürlich Unfug bzw unzureichend ist - habt ihr gegebenenfalls eine Idee, welche Verteilungen sich eignen?

als Vergleich für die Großschäden:

C:\Users\zw878qa\Desktop\Capture1.PNG

hier funktioniert es ganz okay.


Vielen Dank für Eure Hilfe und LG

thomas

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Anhang Nr. 2 (Typ: PNG) [nicht öffentlich]
        
Bezug
Verteilungsfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 05.12.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]