matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikVerteilungsfkt/Wahrscheinlichk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Verteilungsfkt/Wahrscheinlichk
Verteilungsfkt/Wahrscheinlichk < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfkt/Wahrscheinlichk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Mi 16.12.2009
Autor: Schapka

Aufgabe
Zwei Diebe haben gemeinsam in der letzten Nacht Gegenstande im Wert von 100 000 Euro
gestohlen. Zufrieden betrachten sie ihren Gewinn. Als es zur Aufteilung der Beute kommt, will
eigentlich keiner mit dem anderen teilen. Dieb A schlagt ein kleines Glucksspiel vor. Sie wollen
eine faire Munze dreimal hintereinander werfen. Wird dreimal Kopf geworfen, erhalt Dieb A
die gesamte Beute. Wird zweimal Kopf geworfen, so bekommt Dieb A nur 70 000 Euro und
Dieb B 30 000. Fallt Kopf nur einmal, geht die gesamte Beute an Spieler B. Bei dreimal Zahl
wird die Beute gerecht aufgeteilt. Es beschreibe X den Beuteanteil von Dieb A.
a) Welche Werte kann X annehmen?
b) Bestimmen Sie die Verteilung und die Verteilungsfunktion von X und stellen Sie beide
graphisch dar.
c) Bestimmen Sie unter Verwendung der Zufallsvariable X die Wahrscheinlichkeiten dafur,
dass
(i) Dieb B bei diesem Spiel leer ausgeht,
(ii) Dieb A bei diesem Spiel leer ausgeht,
(iii) Dieb A 70 000 Euro oder mehr bekommt. Bestimmen Sie diese Wahrscheinlichkeit einmal
unter Verwendung der Dichte- und einmal unter Verwendung der Verteilungsfunktion aus
(b).

Guten Tag,

ich sitze gerade an meinen geliebten Aufgaben ;D

Und blicke noch nicht so ganz durch....

also ich habe schonmal das einfachste, dass bei
a)  die werte für X {0,50000,70000,100000} sind.

so und jetzt komm ich auch schon ins Stocken ...
Ich weiß wie Verteilungsfunktionen aussehen, aber welche Werte werden denn dann gesetzt? von 0 bis 50000 , von 50000 bis 70000 und von 70000 bis 100000 oder wie was wo?


Würde mich über Anregungen freuen =)
Danke im Voraus!

        
Bezug
Verteilungsfkt/Wahrscheinlichk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Mi 16.12.2009
Autor: Schapka

Habe noch ein wenig getüftelt:

Stimmt es dass ich 1/8 Möglichkeiten für {k,k,k} sowie für {z,z,z} habe und jeweils 3/8 für {z,z,k} ... und {k,k,z} ... ?

(i) Dieb B geht leer aus, wenn gilt {k,k,k} also ist die Wahrscheinlichkeit 1/8?
(ii) Dieb A geht leer aus, wenn gilt {z,z,k}{z,k,z}{k,z,z} also 3/8 ?
(iii) Dieb A bekommt 70000€ oder mehr, wenn gilt {k,k,z}{k,z,k}{z,k,k} und auch {k,k,k} also 1/8 und 3/8 = 4/8 ?

Ist das schonmal richtig so? =)

Bezug
                
Bezug
Verteilungsfkt/Wahrscheinlichk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 Mi 16.12.2009
Autor: svcds

find ich geil, wenn unsere stochastikaufgaben jede woche hier alle rein gestellt werden.....

Bezug
                        
Bezug
Verteilungsfkt/Wahrscheinlichk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Mi 16.12.2009
Autor: Schapka

Beschwer dich bei denen, die es jede Woche machen und nicht bei mir...

Ich wende mich zum ersten Mal für Stochastik an dieses Forum, das einem nicht die Aufgaben löst, sondern mit einem zusammen bespricht...

Soll ich etwa dumm durch die Gegend laufen und mir nichts erklären lassen, den Kommentar kannst du dir nächstes mal sparen.

Danke!

Bezug
        
Bezug
Verteilungsfkt/Wahrscheinlichk: Antwort
Status: (Antwort) fertig Status 
Datum: 07:05 Fr 18.12.2009
Autor: glie


> Zwei Diebe haben gemeinsam in der letzten Nacht
> Gegenstande im Wert von 100 000 Euro
>  gestohlen. Zufrieden betrachten sie ihren Gewinn. Als es
> zur Aufteilung der Beute kommt, will
>  eigentlich keiner mit dem anderen teilen. Dieb A schlagt
> ein kleines Glucksspiel vor. Sie wollen
>  eine faire Munze dreimal hintereinander werfen. Wird
> dreimal Kopf geworfen, erhalt Dieb A
>  die gesamte Beute. Wird zweimal Kopf geworfen, so bekommt
> Dieb A nur 70 000 Euro und
>  Dieb B 30 000. Fallt Kopf nur einmal, geht die gesamte
> Beute an Spieler B. Bei dreimal Zahl
>  wird die Beute gerecht aufgeteilt. Es beschreibe X den
> Beuteanteil von Dieb A.
>  a) Welche Werte kann X annehmen?
>  b) Bestimmen Sie die Verteilung und die
> Verteilungsfunktion von X und stellen Sie beide
>  graphisch dar.
>  c) Bestimmen Sie unter Verwendung der Zufallsvariable X
> die Wahrscheinlichkeiten dafur,
>  dass
>  (i) Dieb B bei diesem Spiel leer ausgeht,
>  (ii) Dieb A bei diesem Spiel leer ausgeht,
>  (iii) Dieb A 70 000 Euro oder mehr bekommt. Bestimmen Sie
> diese Wahrscheinlichkeit einmal
>  unter Verwendung der Dichte- und einmal unter Verwendung
> der Verteilungsfunktion aus
>  (b).
>  Guten Tag,
>  
> ich sitze gerade an meinen geliebten Aufgaben ;D
>  
> Und blicke noch nicht so ganz durch....
>  
> also ich habe schonmal das einfachste, dass bei
> a)  die werte für X {0,50000,70000,100000} sind.

Hallo,

das stimmt [ok]

Die Wahrscheinlichkeiten sind so, wie du sie in deiner Mitteilung bestimmt hast.

[mm] $P(X=0)=\bruch{3}{8}$ [/mm]
[mm] $P(X=50000)=\bruch{1}{8}$ [/mm]
[mm] $P(X=70000)=\bruch{3}{8}$ [/mm]
[mm] $P(X=100000)=\bruch{1}{8}$ [/mm]

Interessant in diesem Zusammenhang:

Der Erwartungswert für X ist 45.000 !
Was folgern wir daraus?

Dieb B hat in der Schule besser aufgepasst als Dieb A! ;-)

Gruß Glie

>  
> so und jetzt komm ich auch schon ins Stocken ...
>  Ich weiß wie Verteilungsfunktionen aussehen, aber welche
> Werte werden denn dann gesetzt? von 0 bis 50000 , von 50000
> bis 70000 und von 70000 bis 100000 oder wie was wo?


Genau.

>  
>
> Würde mich über Anregungen freuen =)
>  Danke im Voraus!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]