matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilungsannahmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Verteilungsannahmen
Verteilungsannahmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsannahmen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 14.09.2005
Autor: BAGZZlash

Hallo zusammen!

Nach meiner Frage von gestern habe ich noch ein bißchen weiter recherchiert und gegrübelt und das ganze auf eine einzige Fragestellung heruntergebrochen:

Welcher Verteilung folgt dieser Ausdruck: [mm]\bruch{\chi^{2}}{n}[/mm]?
Bekanntlich gilt ja [mm]\bruch{\bruch{\chi^{2}}{m}}{\bruch{\chi^{2}}{n}}\sim F_n^{m}[/mm]. Wenn also gelten würde, daß [mm]\bruch{\chi^{2}}{n}\sim \chi^{2}[/mm], dann könnte man ja auch direkt schreiben [mm]\bruch{\chi^{2}_m}{\chi^{2}_n}\sim F_n^{m}[/mm]. Das sieht man aber nie. Ist also [mm]\bruch{\chi^{2}}{n}[/mm] normalverteilt?

Ich habe diese Frage noch nie irgendwo anders gestellt als in meinem Kopf.

        
Bezug
Verteilungsannahmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Do 15.09.2005
Autor: Brigitte

Hallo [mm] $\backslash$ [/mm] ! :-)

> Welcher Verteilung folgt dieser Ausdruck:
> [mm]\bruch{\chi^{2}}{n}[/mm]?
> Bekanntlich gilt ja
> [mm]\bruch{\bruch{\chi^{2}}{m}}{\bruch{\chi^{2}}{n}}\sim F_n^{m}[/mm].
> Wenn also gelten würde, daß [mm]\bruch{\chi^{2}}{n}\sim \chi^{2}[/mm],
> dann könnte man ja auch direkt schreiben
> [mm]\bruch{\chi^{2}_m}{\chi^{2}_n}\sim F_n^{m}[/mm]. Das sieht man
> aber nie. Ist also [mm]\bruch{\chi^{2}}{n}[/mm] normalverteilt?

Das "also" verwirrt mich etwas. Es gibt ja auch Verteilungen, die nicht gerade einer [mm] $\chi^2$-, [/mm] F- oder Normalverteilung entsprechen. Einige Verteilungen haben einfach keinen Namen.

Zu Deiner Vermutung: Angenommen es gilt [mm] $X\sim\chi^2_m$. [/mm] Dann folgt ja bekanntlich $E(X)=m$ und $Var(X)=2m$. Würde nun [mm] $\frac{X}{n}\sim\chi^2_k$ [/mm] gelten (mit einem noch zu bestimmenden Freiheitsgrad $k$), müsste gelten:

$E(X/n)=k$ und $Var(X/n)=2k$, also

$m/n=k$ und [mm] $2m/n^2=2k$, [/mm] was zu einem Widerspruch führt, da $k,m>0$.

Die Verteilung von [mm] $\frac{X}{n}$ [/mm] hat vermutlich keinen Namen, eventuell skalierte [mm] $\chi^2$-Verteilung [/mm] (nichtzentral gibt es auf jeden Fall, aber skaliert habe ich noch nicht gehört), und man begnügt sich damit, dass man weiß, wie $X$ verteilt ist. Damit kann man ja schnellstens alles Wichtige bestimmen. Normalverteilt ist diese Zufallsvariable bestimmt nicht.

> Ich habe diese Frage noch nie irgendwo anders gestellt als
> in meinem Kopf.

[lol]

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]