matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilung ermitteln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Verteilung ermitteln
Verteilung ermitteln < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung ermitteln: Problem
Status: (Frage) beantwortet Status 
Datum: 10:33 Mi 04.06.2014
Autor: k0ol

Hallo liebes Forum,

ich habe das folgende Problem:

Angenommen es gibt drei Typen von Menschen, die alle genau eine Kugel in eine Urne werfen. Menschen vom Typ A werfen immer eine rote Kugel in die Urne, Menschen vom Typ B werfen immer eine grüne Kugel in die Urne und Menschen vom vom Typ C werfen entweder eine rote oder eine grüne oder eine blaue Kugel in die Urne (gleichverteilt).

Ich beobachte nur die ex-post Zusammensetzung der Kugeln in der Urne und möchte daraus auf die Verteilung der Typen schließen. Mein bisheriger Ansatz war der folgende:

Seien [mm] $n_r$, $n_g$ [/mm] und [mm] $n_b$ [/mm] die Anzahl von roten, grünen und blauen Kugeln in der Urne. Wenn [mm] $\alpha_A$, $\alpha_B [/mm] und [mm] $\alpha_C$ [/mm] den Anteil der Menschen vom entsprechenden Typ bezeichnet ist die Wahrscheinlichkeit eine gegebene Zusammensetzung an Kugeln zu beobachten:

[mm] $$L=(\frac{\alpha_C}{3}+\alpha_A)^{n_r} (\frac{\alpha_C}{3}+\alpha_B)^{n_g}(\frac{\alpha_C}{3})^{n_b}$$ [/mm]  

Ich habe nun die [mm] $alpha_i$ [/mm] so gewählt, dass die Wahrscheinlichkeit $L$ maximiert wird (Maximum Likelihood). Dabei habe ich Nebenbedingungen eingeführt, so dass alle [mm] $\alpha_i \in [/mm] [0:1]$ und [mm] $\sum \alpha_i [/mm] =1$ (weil in meinem Modell jeder Mensch genau einen Typ hat).

Die Ergebnisse sind leider nicht so überzeugend, was allerdings auch technische Gründe haben könnte (ich habe die Optimierung mit R und constrOptim durchgeführt). Daher meine Fragen:

- Stimmt der Ansatz mit ML unter Nebenbedingung überhaupt?
- Falls ja, stimmt die Likelihood Funktion?
- Gibt es evtl einen besseren/direkteren Weg die Verteilung der Typen aus Daten abzulesen?

Danke und Viele Grüße
ko0l

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verteilung ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Mi 04.06.2014
Autor: abakus


> Hallo liebes Forum,

>

> ich habe das folgende Problem:

>

> Angenommen es gibt drei Typen von Menschen, die alle genau
> eine Kugel in eine Urne werfen. Menschen vom Typ A werfen
> immer eine rote Kugel in die Urne, Menschen vom Typ B
> werfen immer eine grüne Kugel in die Urne und Menschen vom
> vom Typ C werfen entweder eine rote oder eine grüne oder
> eine blaue Kugel in die Urne (gleichverteilt).

>

> Ich beobachte nur die ex-post Zusammensetzung der Kugeln in
> der Urne und möchte daraus auf die Verteilung der Typen
> schließen. Mein bisheriger Ansatz war der folgende:

>

> Seien [mm]n_r[mm], [/mm]n_g[/mm] und [mm]n_b[/mm] die Anzahl von roten, grünen
> und blauen Kugeln in der Urne. Wenn [mm]\alpha_A[mm], [/mm]\alpha_B[/mm]
> und [mm]\alpha_C[/mm] den Anteil der Menschen vom entsprechenden
> Typ bezeichnet ist die Wahrscheinlichkeit eine gegebene
> Zusammensetzung an Kugeln zu beobachten:

>

> [mm]L=(\frac{\alpha_C}{3}+\alpha_A)^{n_r} (\frac{\alpha_C}{3}+\alpha_B)^{n_g}(\frac{\alpha_C}{3})^{n_b}[/mm]

>
>

> Ich habe nun die [mm]alpha_i[/mm] so gewählt, dass die
> Wahrscheinlichkeit [mm]L[/mm] maximiert wird (Maximum Likelihood).
> Dabei habe ich Nebenbedingungen eingeführt, so dass alle
> [mm]\alpha_i \in [0:1][/mm] und [mm]\sum \alpha_i =1[/mm] (weil in meinem
> Modell jeder Mensch genau einen Typ hat).

>

> Die Ergebnisse sind leider nicht so überzeugend, was
> allerdings auch technische Gründe haben könnte (ich habe
> die Optimierung mit R und constrOptim durchgeführt). Daher
> meine Fragen:

>

> - Stimmt der Ansatz mit ML unter Nebenbedingung
> überhaupt?
> - Falls ja, stimmt die Likelihood Funktion?
> - Gibt es evtl einen besseren/direkteren Weg die
> Verteilung der Typen aus Daten abzulesen?

>

> Danke und Viele Grüße
> ko0l

>

> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo ko01,
ich kann mit deinem Ansatz mangels eigener Vorkenntnisse in der ML-Sache persönlich nichts anfangen.
Für mich ergibt sich aber folgender simpler Zugang: Da die blauen Kugeln nur vom Typ C stammen (und der Typ C mit der gleichen Wahrscheinlichkeit zwischen rot, grün und blau wählt), sollte man auch von den eingeworfenen roten bzw. grünen Kugeln genau die Anzahl dem Typ C zuordnen, die der Anzahl der blauen Kugeln entspricht.
Was danach bei grün und rot noch übrig ist, kann den Typ A bzw. B zugeordnet werden.
Gruß Abakus

Bezug
                
Bezug
Verteilung ermitteln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mi 04.06.2014
Autor: k0ol

Hallo abakus,

schon mal vielen Dank für Deine Antwort.

Das beschriebene Problem ist eigentlich nur eine vereinfachte Version, die sich erst mal leichter beschreiben lies. In meinem eigentlichen Problem gibt es 64 Farben und 6 Typen. 59 Farben werden nur vom Typ 0 gewählt, Typ 1 bis Typ 5 wählen jeweils genau eine der verbleibenden 5 Farben. Typ 0 randomisiert (nach wie vor gleichverteilt) allerdings über alle 64 Farben. Wenn z.B. 10% der Kugeln eine der 59 Farben, die nur Typ 0 wählt, haben, würde Dein Ansatz bedeuten, dass der Anteil an Typ 0 Menschen [mm] $10\%\cdot\frac{64}{59}\approx 10.85\%$ [/mm] beträgt, oder? Die verbleibenden 89.15% verteile ich dann gemäß den beobachteten Häufigkeiten auf die restlichen 5 Typen, ja?

Wie sicher bist Du Dir bei Diesem Vorgehen?

Danke und Gruß
k0ol

Bezug
        
Bezug
Verteilung ermitteln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Do 05.06.2014
Autor: luis52

Moin k0ol

[willkommenmr]

Mir stellt sich das Problem so dar: Drei Merkmal, welche mit der Wsk [mm] $p_j$ [/mm] auftreten. In einer Stichprobe treten die Merkmale mit den Haeufigkeiten [mm] $n_j$ [/mm] auf. Dann ist die L-Funktion [mm] $L=p_1^{n_1}p_2^{n_2}p_3^{n_3}$. [/mm] Die  ML-Schaetzer sind dann [mm] $\hat p_j=n_j/n$, $n=n_1+n_2+n_3$. [/mm]

Setze nun [mm] $p_1=\alpha_C+\alpha_A$ [/mm] usw. ...



Bezug
                
Bezug
Verteilung ermitteln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Do 05.06.2014
Autor: k0ol

Hallo Luis,


Sofern Du mit Deinem letzten Satz [mm] $p_1=\frac{\alpha_C}{3}+\alpha_A$ [/mm] meinst, wird das dann wohl stimmen. Es läuft dann auf diesselbe Lösung wie der von abakus vorgeschlagene Ansatz hinaus. Ich kriege dann

[mm] $$\alpha_C=3\frac{n_b}{\sum n_i} [/mm] $$ und

$$ [mm] \alpha_{A,B}=\frac{n_{r,g}-n_b}{\sum n_i}$$ [/mm]

Danke Euch Beiden, so wie es aussieht habe ich mir das Leben da deutlich zu schwer gemacht.

Gruß k0ol

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]