matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Verteilung des Schätzers
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Verteilung des Schätzers
Verteilung des Schätzers < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung des Schätzers: Wie bestimmt man's?
Status: (Frage) beantwortet Status 
Datum: 22:49 Mi 28.11.2012
Autor: GeMir

Bei der Konstruktion von Konfidenzintervallen werden u.a. Erwartungswert mit dem Mittelwert [mm] \bar{X} [/mm] = [mm] \frac{1}{n}\sum_{i=1}^{n}{X_i} [/mm] und die Varianz mit empirischer Varianz [mm] S^2 [/mm] = [mm] \frac{1}{n-1}\cdot\sum_{i=1}^{n}{(X_i - \bar{X})^2} [/mm] geschätzt. Dabei wird in der Regel der Schätzer Standardisiert: statt [mm] \bar{X} [/mm] verwendet man z.B. bei bekannter Varianz [mm] \sqrt{n}\cdot\frac{\bar{X}-\mu}{\sigma}. [/mm] Man sagt dabei, dass der standardisierte Schätzer standardnormalverteilt ist. Ist jedoch die Varianz unbekannt, so behauptet man [mm] \sqrt{n}\cdot\frac{\bar{X}-\mu}{S} \sim t_{n-1}. [/mm]

Meine Frage lautet: Wie bestimmt man die Verteilung des Schätzers?

In der Literatur und im Internet wird es leider immer nur als Tatsache angegeben :/

        
Bezug
Verteilung des Schätzers: Antwort
Status: (Antwort) fertig Status 
Datum: 06:56 Do 29.11.2012
Autor: luis52


> Bei der Konstruktion von Konfidenzintervallen werden u.a.
> Erwartungswert mit dem Mittelwert [mm]\bar{X}[/mm] =
> [mm]\frac{1}{n}\sum_{i=1}^{n}{X_i}[/mm] und die Varianz mit
> empirischer Varianz [mm]S^2[/mm] =
> [mm]\frac{1}{n-1}\cdot\sum_{i=1}^{n}{(X_i - \bar{X})^2}[/mm]
> geschätzt. Dabei wird in der Regel der Schätzer
> Standardisiert: statt [mm]\bar{X}[/mm] verwendet man z.B. bei
> bekannter Varianz [mm]\sqrt{n}\cdot\frac{\bar{X}-\mu}{\sigma}.[/mm]
> Man sagt dabei, dass der standardisierte Schätzer
> standardnormalverteilt ist. Ist jedoch die Varianz
> unbekannt, so behauptet man
> [mm]\sqrt{n}\cdot\frac{\bar{X}-\mu}{S} \sim t_{n-1}.[/mm]
>
> Meine Frage lautet: Wie bestimmt man die Verteilung des
> Schätzers?

Moin, dass der Quotient $ [mm] \sqrt{n}\cdot\frac{\bar{X}-\mu}{S}$ [/mm] *immer* t-verteilt ist, ist nicht korrekt. Das trifft nur zu, wenn die Grundgesamtheit normalverteilt ist. Ansonsten wird vielfach unterstellt, dass $ [mm] \sqrt{n}\cdot\frac{\bar{X}-\mu}{\sigma}$ [/mm] approximativ standardnormverteilt ist, was mit dem Zentralen Grenzwertsatz begruendet wird. Das wird dann auch fuer  $ [mm] \sqrt{n}\cdot\frac{\bar{X}-\mu}{S}$ [/mm] unterstellt, wenngleich hier die Guete der Approximation i.a. schlechter ist.

vg Luis


Bezug
                
Bezug
Verteilung des Schätzers: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:06 Do 29.11.2012
Autor: GeMir

Ja, klar, dass es nur für die normalverteilte Grundgesamtheit gilt, aber meine Frage bezog sich eigentlich auf diesen feinen Unterschied N(0,1) und [mm] t_{n-1}. [/mm] Ich würde sehr gern die Rechnung sehen, mit der die Verteilungen hergeleitet werden und genau von der Rechnung fehlt in der Literatur jede Spur.

Und bei der Konstruktion der Konfidenzintervalle für [mm] \sigma^2 [/mm] kommt ja eine weitere Verteilung ins Spiel: [mm] \chi^2_{n-1}[/mm]

Bezug
                        
Bezug
Verteilung des Schätzers: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Do 29.11.2012
Autor: luis52


> Ja, klar, dass es nur für die normalverteilte
> Grundgesamtheit gilt, aber meine Frage bezog sich
> eigentlich auf diesen feinen Unterschied N(0,1) und
> [mm]t_{n-1}.[/mm] Ich würde sehr gern die Rechnung sehen, mit der
> die Verteilungen hergeleitet werden und genau von der
> Rechnung fehlt in der Literatur jede Spur.

Seite 249-250 hier:

@BOOK{Mood74,
  title = {Introduction to the Theory of Statistics},
  publisher = {Mc-Graw-Hill},
  year = {1974},
  author = {A. M. Mood and F. A. Graybill and D. C. Boes},
  edition = {3. edition}
}

>  
> Und bei der Konstruktion der Konfidenzintervalle für
> [mm]\sigma^2[/mm] kommt ja eine weitere Verteilung ins Spiel:
> [mm]\chi^2_{n-1}[/mm]  

Ist das eine Frage?

vg Luis


Bezug
                                
Bezug
Verteilung des Schätzers: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:05 Do 29.11.2012
Autor: GeMir


> Introduction to the Theory of Statistics

[]Hier also. Die Gleichungen, die auf den Seiten zu finden sind und die man ruhig zitieren könnte, bringen mich leider nicht weiter.

> Ist das eine Frage?

Dies ist eine Behauptung.

Bezug
                                        
Bezug
Verteilung des Schätzers: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 01.12.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]