matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Verteilung
Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Do 18.09.2014
Autor: rollroll

Aufgabe
Sie stehen im Rathaus an, um sich einen neuen Pass ausstellen zu lassen. Sie sind als nächster an der Reihe, allerdings sind die 3 Sachbearbeiterinnen A,B, C noch beschäftigt. Bei jeder der Frauen sei die Zeit, die vergeht, bis die aktuelle Arbeit beendet ist, exponentialverteilt mit [mm] \lambda_A, \lambda_B, \lambda_C [/mm] >0, wobei angenommen wird, dass die Zeiten unabhängig sind. Es sei X die ZV, die Ihre Wartezeit beschreibt, bis Sie bedient werden können. Bestimme die Verteilung von X.

Hallo,

meine Idee:

Ich berechne [mm] \integral_{0}^{t}{\lambda_A*\lambda_B*\lambda_C exp(-( \lambda_A+\lambda_B+\lambda_C)x) dx}. [/mm]

Stimmt das?

        
Bezug
Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Do 18.09.2014
Autor: luis52


>  
> meine Idee:
>
> Ich berechne
> [mm]\integral_{0}^{t}{\lambda_A*\lambda_B*\lambda_C exp(-( \lambda_A+\lambda_B+\lambda_C)x) dx}.[/mm]

Wenn, dann

[mm]\integral_{0}^{t}{\lambda_A*\lambda_B*\lambda_C\exp(-( \lambda_A*\lambda_B*\lambda_C)x) dx}.[/mm]

oder

[mm]\integral_{0}^{t}{(\lambda_A+\lambda_B+\lambda_C) \exp(-( \lambda_A+\lambda_B+\lambda_C)x) dx}.[/mm]


>  
> Stimmt das?

Nein.


Bezug
                
Bezug
Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Do 18.09.2014
Autor: rollroll

Weshalb denn? Ich multipliziere doch in einem ersten Schritt die dichten auf und erhalte so den Integraden.

Bezug
                        
Bezug
Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Do 18.09.2014
Autor: luis52


> Weshalb denn?

Weshalb sollte es?

> Ich multipliziere doch in einem ersten
> Schritt die dichten auf und erhalte so den Integraden.

Prima. Nur ist das Produkt ist i.a. keine Dichte.

Ungefaehr []hier geht die Reise hin.


Bezug
                                
Bezug
Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Do 18.09.2014
Autor: rollroll

Aber ist es nicht so, dass das Produkt in diesem Fall wieder eine dichte ist wegen der Unabhaengigkeit?

Bezug
                                        
Bezug
Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Do 18.09.2014
Autor: luis52


> Aber ist es nicht so, dass das Produkt in diesem Fall
> wieder eine dichte ist wegen der Unabhaengigkeit?

Nein, nimm an [mm] $\lambda_A=\Lambda_B=1$. [/mm] Dann ist das Produkt [mm] $1\cdot1\exp(-2x)=\exp(-2x)$ [/mm] keine Dichte.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]