matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilung- & Quantilfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Verteilung- & Quantilfunktion
Verteilung- & Quantilfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung- & Quantilfunktion: Ungleichungen
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 09.09.2010
Autor: varianz12345

Hi,
ich würde gern wissen, ob folgende Ungleichung für Verteilungsfunktionen gilt:

Zufallsvariable [mm] X\ge [/mm] 0 und [mm] Y\ge [/mm] 0 mit VFunktionen [mm] F_{X}(x) [/mm] und  [mm] F_{Y}(y). [/mm]

[mm] F_{X+Y}(x)\le F_{X}(x)+F_{Y}(x) [/mm]

und ob für die Quantilfunktionen folg. gilt:

[mm] F_{X+Y}^{-1}(x)\ge F_{X}^{-1}(x)+F_{Y}^{-1}(x) [/mm]


Viele Aussagen oder Eigenschaften habe über die Quantilfunktion nicht finden können, wenn einer oder eine von euch nützliche links zum Thema kennt, wäre ich sehr dankbar. :)
viele grüße

PS: folgendes kenn ich schon:

[mm] X\ge [/mm] Y [mm] \Rightarrow F_{X}^{-1}(x)\ge F_{Y}^{-1}(x) [/mm]
und
[mm] X=X^{+}-X^{-} \Rightarrow F_{X}^{-1}(x)=F_{X^{+}}^{-1}(x)-F_{X^{-}}^{-1}(x) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verteilung- & Quantilfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Do 09.09.2010
Autor: Gonozal_IX

Huhu,

> Hi,
> ich würde gern wissen, ob folgende Ungleichung für
> Verteilungsfunktionen gilt:
>  
> Zufallsvariable [mm]X\ge[/mm] 0 und [mm]Y\ge[/mm] 0 mit VFunktionen [mm]F_{X}(x)[/mm]
> und  [mm]F_{Y}(y).[/mm]
>  
> [mm]F_{X+Y}(x)\le F_{X}(x)+F_{Y}(x)[/mm]

Ja, denn offensichtlich gilt:

[mm] $\{X + Y \le z\} \subset \{X \le z \} \Rightarrow F_{X+Y}(z) \le F_X(z) \Rightarrow F_{X+Y}(z) \le F_X(z) [/mm] + [mm] F_Y(z)$ [/mm]

  

> und ob für die Quantilfunktionen folg. gilt:
>  
> [mm]F_{X+Y}^{-1}(x)\ge F_{X}^{-1}(x)+F_{Y}^{-1}(x)[/mm]


[mm] $F_{X+Y}^{-1}(x) [/mm] = [mm] \inf_{x\in\IR}\{F_{X+Y}(x) \ge z\} \overbrace{\ge}^{\text{wegen oben}} \inf_{x\in\IR}\{F_{X}(x)+F_{Y}(x) \ge z\}$ [/mm]

Ob nun auch [mm] $\inf_{x\in\IR}\{F_{X}(x)+F_{Y}(x) \ge z\} \ge \inf_{x\in\IR}\{F_{X}(x) \ge z\} [/mm] + [mm] \inf_{x\in\IR}\{F_{Y}(x) \ge z\} [/mm] $ gilt, muss ich noch weiterüberlegen.....

MFG,
Gono

Bezug
                
Bezug
Verteilung- & Quantilfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Fr 10.09.2010
Autor: varianz12345

Hallo,
ich glaube, dass auch [mm] F_{X+Y}(z) \le \frac{1}{2}(F_X(z) [/mm] + [mm] F_Y(z)) [/mm] gilt.
Dann habe ich noch das folg. Beispiel betrachtet:
X,Y [mm] \sim [/mm] U([0,1]) und die Summe Z:=X+Y mit der DreiecksVF.

[mm] F(x)=\begin{cases} \frac{x^2}{2}, & \mbox{für } 0 \le x \le 1 \\ 1- \frac{(2-x)^2}{2}, & \mbox{für } 1 < x \le 2 \end{cases} [/mm]

Für dieses Bsp gilt die obige Ungleichung, die Quantilsungl. [mm] F_{X+Y}^{-1}(x)\ge F_{X}^{-1}(x)+F_{Y}^{-1}(x) [/mm] jedoch nicht ganz :)
Bis zum Erwartungswert von Z (E(Z)=1) oder auch 0.5-Quantil von [mm] F_{X+Y}^{-1}, [/mm] d.h. [mm] F_{X+Y}^{-1}(0.5), [/mm] gilt [mm] F_{X+Y}^{-1}(x)\ge F_{X}^{-1}(x)+F_{Y}^{-1}(x). [/mm] Ab dem 0.5-Quantil gilt dann [mm] F_{X+Y}^{-1}(x)\le F_{X}^{-1}(x)+F_{Y}^{-1}(x). [/mm]

mfg,
varianz12345


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]