matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauVerteilte Kräfte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maschinenbau" - Verteilte Kräfte
Verteilte Kräfte < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilte Kräfte: Streckenlast
Status: (Frage) beantwortet Status 
Datum: 18:55 Mo 16.01.2012
Autor: feinstkorn

Aufgabe
Eine Streckenlast von q(x) ist ein Dreieck mit einer Grundseite L beginnend von x1 bis x2 (also x1+x2=L). Für die Streckenlast gilt: [mm] q(x)=-\bruch{q0}{l}\cdot(x-x1)\cdot [/mm] ey

Bestimmen Sie Betrag und Richtung der Resultierenden Fr.

Wie komme ich von [mm] Fr=\integral_{x1}^{x2}q(x)\, [/mm] dx auf die Lösung [mm] Fr=-\bruch{1}{2}\cdot qo\cdot l\cdot [/mm] ey ?
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:



        
Bezug
Verteilte Kräfte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Mo 16.01.2012
Autor: Adamantin


> Eine Streckenlast von q(x) ist ein Dreieck mit einer
> Grundseite L beginnend von x1 bis x2 (also x1+x2=L). Für
> die Streckenlast gilt: [mm]q(x)=-\bruch{q0}{l}\cdot(x-x1)\cdot[/mm]
> ey
>  
> Bestimmen Sie Betrag und Richtung der Resultierenden Fr.
>  Wie komme ich von [mm]Fr=\integral_{x1}^{x2}q(x)\,[/mm] dx auf die
> Lösung [mm]Fr=-\bruch{1}{2}\cdot qo\cdot l\cdot[/mm] ey ?
>  Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
>  

Werde leider aus deiner obigen Aufgabenstellung nicht zu 100% schlau, da ich nicht weiß, warum dein q(x) den Term [mm] (x-x_1) [/mm] enthält und wieso du nur bei einem x einen Index hast, aber ganz allgemein: Eine Streckenlast ist eine Kraft/Strecke, also eine Linienkraft. Um die Kraft zu erhalten, muss folglich Kraft/Strecke*Strecke gelten. Das macht man formal mittels Integral. Wenn du also den Ansatz

[mm] $q(x)=-\bruch{q0}{l}\cdot{}x$ [/mm] hast (ey interessiert hier erstmal nicht), so folgt:

[mm] $F=\int_0^x -\bruch{q0}{l}\cdot(x)=-\bruch{1q_0}{2}\cdot{}\bruch{x^2}{l} [/mm] dx

Integrierst du von [mm] x_1=0 [/mm] bis [mm] x_2=l, [/mm] bzw so dass x1 bis x2 gerade die Strecke l ist, so gilt natürlich für den eingesetzten Wert: [mm] $(l-0)^2=l^2$. [/mm] Und dann erhälst du, wenn du [mm] l^2/l [/mm] teilst, gerade deine gesuchte Lösung.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]