matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungVerteilfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Verteilfunktionen
Verteilfunktionen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Sa 04.02.2012
Autor: Kuriger

Hallo

Ich kann mich vage erinnern, dass ich verschiedene Funktion gegeben hatte wie:

[Dateianhang nicht öffentlich]

Ich musste nun angeben ob es sich dabei um Verteilfunktionen handelt. Doch wie sehe ich das? resp. was sind denn die Eigenschaften von Verteilfunktionen?

Danke

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Verteilfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Sa 04.02.2012
Autor: wieschoo

Man kann das Bild nicht sehen.

Eine rechtsseitig stetige, monoton wachsende Funktion [mm]\blue{F:\IR\to[0,1]}[/mm] mit [mm]\blue{\lim_{x\to -\infty}F(x)=0}[/mm] und [mm]\blue{\lim_{x\to +\infty}F(x)=1}[/mm] heißt Verteilungsfunktion.

(uneigentliche Vtl-Fkt. haben [mm]\lim_{x\to +\infty}F(x)\leq 1[/mm])

also musst du das "Blaue" testen

Bezug
                
Bezug
Verteilfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mo 06.02.2012
Autor: Kuriger

[mm] F_3(x) [/mm] = [mm] \bruch{2}{\pi}*(1 [/mm] + arctan (x))

Wieso kann dies eine Verteilfunktion sein?

z. B. [mm] F_3(-1000) [/mm] = -0.362, also könnte es doch gar keien Verteilfunktion sein?
Aber in der Lösung steht, dass es sich um eine Verteilfunktion handelt..

Bezug
                        
Bezug
Verteilfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Mo 06.02.2012
Autor: Gonozal_IX

Hiho,

> z. B. [mm]F_3(1000)[/mm] = -0.362,

wie kommst du darauf? Das sieht man offensichtlich, dass das falsch ist, da [mm] $\arctan(x) \ge [/mm] 0$ für $x [mm] \ge [/mm] 0$.

Wenn man was testet, sollte man es auch richtig machen.

MFG;
Gono.

Bezug
                                
Bezug
Verteilfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Mo 06.02.2012
Autor: Kuriger

Ich meinte natürlich "-1000" habe es korrigiert

Bezug
                        
Bezug
Verteilfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Mo 06.02.2012
Autor: Gonozal_IX

Das selbst ist auch keine Verteilungsfunktion.

Ich vermute hier eher einen Tippfehler von dir.

Korrekt lautet die Verteilungsfunktion

$F(x) = [mm] \bruch{1}{2} [/mm] + [mm] \bruch{1}{\pi}\arctan(x) [/mm] = [mm] \bruch{1}{2}*\left(1 + \bruch{2}{\pi}\arctan(x)\right)$ [/mm]

MFG,
Gono.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]