matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieVerteil. von unendl. vielen ZV
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Verteil. von unendl. vielen ZV
Verteil. von unendl. vielen ZV < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteil. von unendl. vielen ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 04.06.2012
Autor: steppenhahn

Aufgabe
$X := [mm] (X_n)_{n\in\IN}$ [/mm] sei eine Folge von Zufallsvariablen auf einem W-Raum [mm] $(\Omega, \mathcal{A}, \IP)$. [/mm] Gilt:

[mm] $E(X_1) [/mm] = [mm] \int X_1 [/mm] d [mm] \IP [/mm] = [mm] \int [/mm] g(X) d [mm] \IP [/mm] = [mm] \int [/mm] g( [mm] (x_n)_{n\in\IN}) [/mm] d [mm] \IP^{X}((x_n)_{n\in\IN}) [/mm] = [mm] \int x_1 [/mm] d [mm] \IP^{X}((x_n)_{n\in\IN})$, [/mm]

wenn man $g: [mm] \IR^{\IN} \to \IR, [/mm] g( [mm] (x_n)_{n\in\IN}) [/mm] = [mm] x_1$ [/mm] setzt?



Hallo,

Ich frage mich gerade, ob alle obigen Schritte erlaubt sind.

Ich bin mir sicher, dass es okay ist, wenn ich statt einer Folge von Zufallsvariablen nur endlich viele Zufallsvariablen [mm] $X_1,...,X_n$ [/mm] betrachte. Aber ändert sich im unendlichen Fall etwas?

Gibt es da irgendwelche Probleme in obiger Gleichungskette?

Vielen Dank für Eure Hilfe und viele Grüße,
Stefan

        
Bezug
Verteil. von unendl. vielen ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 06:53 Di 05.06.2012
Autor: tobit09

Hallo Stefan,


die Gleichungskette ist völlig korrekt (vorausgesetzt der Erwartungswert existiert überhaupt). An welchem Schritt zweifelst du?


Viele Grüße
Tobias


Bezug
                
Bezug
Verteil. von unendl. vielen ZV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Mo 18.06.2012
Autor: steppenhahn

Hallo Tobias,

ich habe nochmal drüber nachgedacht (sehr lange :-) ) und jetzt glaube ich es auch. Mein Problem war, die passende Konfiguration für die Anwendung der Transformationsformel zu schaffen.

Dafür muss man ja strenggenommen die (messbaren) Projektionen

[mm] $\pi_k [/mm] : [mm] \left(\produkt_{n \in \IN}\IR, \bigotimes_{n\in\IN}B_{\IR}\right) \to (\IR, B_{\IR}), \quad [/mm] x [mm] \mapsto x_k$. [/mm]

betrachten. (Bildraum von [mm] $(X_k)_{k \in \IN}$ [/mm] ist ja [mm] $\produkt_{n\in\IN}\IR$). [/mm]

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]