matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVertauschen von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vertauschen von Matrizen
Vertauschen von Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vertauschen von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 04.03.2006
Autor: Rhia

Aufgabe
Es sei K ein Körper und [mm]A \in K^{n \times n}[/mm] für ein [mm]1 \le n \in \IN[/mm]. Weiter seien [mm]f,g \in K[X][/mm] zwei Polynome. Zeigen Sie, dass die Matrizen f(A) und g(A) vertauschbar sind, dass also
f(A)*g(A)=g(A)*f(A) ist.

Hallo

wie angekündigt hier noch meine zweite Aufgabe. Und auch hier finde ich kein Packan. Könnt ihr mir vielleicht helfen?

Bis bald

Rhia


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vertauschen von Matrizen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 17:58 Sa 04.03.2006
Autor: Pi3141

Bei solchen Aufgaben, musst du dir immer erst einmal überleben, was du überhaupt gegeben hast. Du hast zwei Polynome gegeben, die hier auf Matrizen operieren. Aber nicht auf allen Matrizen, sondern nur auf quadratische vom Grad kleiner gleich 1. Bei uns in der Vorlesung sind Matrizen minimal [mm] 1\times1 [/mm] groß, weshalb du nur diesen Fall untersuchen musst.
Du sollst jetzt zeigen, dass die beiden Polynome austauschbar sind. Das hat etwas mit der Multiplikation zweier Polynome zu tun. Also schreiben wir zuerst auf, was es bedeutet 2 Polynome zu multiplizieren.  Dann kannst du zeigen, dass tatsächlich f(A)*g(A)=g(A)*f(A) gilt.
Hinweis: Hier ist die Matrixmultiplikation tatsächlich mal kommutativ (ist ja [mm] 1\times1 [/mm] ). Musst du nur noch zeigen, bevor du das benutzt.

Wenn du Fragen zu dieser Antwort hast, kannst, du ja noch mal schreiben.


Bezug
                
Bezug
Vertauschen von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Sa 04.03.2006
Autor: felixf


> Bei solchen Aufgaben, musst du dir immer erst einmal
> überleben, was du überhaupt gegeben hast. Du hast zwei
> Polynome gegeben, die hier auf Matrizen operieren. Aber
> nicht auf allen Matrizen, sondern nur auf quadratische vom
> Grad kleiner gleich 1. Bei uns in der Vorlesung sind

Das stimmt nicht, die Matrizen sollen vom Grad groesser gleich 1 sein! (Falls da wirklich kleiner gleich $1$ stehen wuerde waer das schon richtig was du schreibst!)

LG Felix


Bezug
        
Bezug
Vertauschen von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Sa 04.03.2006
Autor: felixf


> Es sei K ein Körper und [mm]A \in K^{n \times n}[/mm] für ein [mm]1 \le n \in \IN[/mm].
> Weiter seien [mm]f,g \in K[X][/mm] zwei Polynome. Zeigen Sie, dass
> die Matrizen f(A) und g(A) vertauschbar sind, dass also
> f(A)*g(A)=g(A)*f(A) ist.
>  Hallo
>  
> wie angekündigt hier noch meine zweite Aufgabe. Und auch
> hier finde ich kein Packan. Könnt ihr mir vielleicht
> helfen?

Du brauchst, dass [mm] $A^n A^m [/mm] = [mm] A^m A^n$ [/mm] ist fuer ganze Zahlen $n, m [mm] \ge [/mm] 0$. Davon kannst du dich aber sicher schnell ueberzeugen :-)

Wenn du das hast, dann schreib doch $f = [mm] \sum_{i=0}^n a_i x^i$ [/mm] und $g = [mm] \sum_{j=0}^m b_j x^j$ [/mm] mit [mm] $a_i, b_j \in [/mm] K$. Dann kannst du $f(A) g(A)$ und $g(A) f(A)$ explizit ausrechnen, und da [mm] $\lambda A^k [/mm] = [mm] A^k \lambda$ [/mm] fuer alle [mm] $\lambda \in [/mm] K$ und $k [mm] \ge [/mm] 0$ ist siehst du schnell das beide Ausdruecke gleich sind.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]