matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVerständnisproblem Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Verständnisproblem Beweis
Verständnisproblem Beweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Fr 15.07.2011
Autor: SasaOnKekse

Aufgabe
Beweisen Sie durch vollständige Induktion, dass für alle n [mm] \ge [/mm] 10 gilt:
[mm] 2^n [/mm] > [mm] n^3 [/mm]

Hallo zusammen,

lerne grade für die kommende Matheklausur und kämpf mich durch die Induktion.
Habe für die Aufgabe eine Lösung, welche ich ab einer bestimmten Stelle nicht mehr verstehe. Hier der Rechenweg:

Anfang:
n=10: 2^10 = 1024 > 1000 = [mm] 10^3 [/mm]

Induktionsschluss:
[mm] 2^{n+1} [/mm] = [mm] 2\*2^n [/mm] > [mm] 2\*n^3 [/mm] = [mm] n^3+n^3 [/mm] > (!!!)  [mm] n^3 [/mm] + [mm] 7n^2 [/mm] = [mm] n^3 [/mm] + [mm] 3n^2 [/mm] + [mm] 4n^2 [/mm] = [mm] n^3 [/mm] + [mm] 3n^2 [/mm] + [mm] 3n^2 [/mm] + [mm] n^2 [/mm] > [mm] n^3 [/mm] + [mm] 3n^2 [/mm] + 3n + 1 = [mm] (n+1)^3 [/mm]

Den Schritt beim "(!!!)" verstehe ich nicht. Woher kommt das [mm] 7n^2? [/mm]

Und als kleine Randfrage.. ist die Schreibweise so in Ordnung? In der Musterlösung, die jedoch nicht aus der Uni kommt, ist wirklich alles in eine Zeile geschrieben.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verständnisproblem Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Fr 15.07.2011
Autor: Schadowmaster

Nun, überleg doch mal, wieso gilt
[mm] $n^3 [/mm] > [mm] 7n^2$ [/mm] wenn du weißt, dass $n [mm] \geq [/mm] 10$ ist?

Zu deiner anderen Frage:
Dass der Induktionsschluss komplett in einer Zeile steht ist kein Problem, ist sogar manchmal schöner sowas.
Du fängst auf der einen Seite an und rechnest so lange bis du auf der anderen ankommst, da ist überhaupt nichts gegen einzuwenden (und du musst nicht immer aufpassen ob du nun einen Äquivalenzpfeil oder einen Implikationspfeil oder was auch immer an den Rand malen musst).
Ich persönlich bin der Meinung falls es möglich ist sollte man es besser so machen als mit vielen Gleichungen und Äquivalenzumformungen (aber jedem das seine^^).

Es fehlt aber sowohl ein schöner Anfang/Überschrift als auch (ganz wichtig!) die Induktionsvoraussetzung.
Ich hoffe mal in deinem Interesse, dass du die bei dir stehen hast und sie nur hier nicht abtippen wolltest, denn bei Induktionsaufgaben (vor allem am Anfang) gibts 1/3 der Punkte für die Rechnung und 2/3 für den formal korrekten Aufbau.

Bezug
                
Bezug
Verständnisproblem Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Fr 15.07.2011
Autor: SasaOnKekse

um ehrlich zu sein, ich komme nicht drauf.. ist das aus dem voherigen Teil schon ersichtlich? Oder kann es ich als gegeben betrachten, dass [mm] n^3 [/mm] > [mm] 7n^2 [/mm] ist?

Bezug
                        
Bezug
Verständnisproblem Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Fr 15.07.2011
Autor: Schadowmaster

Es ist
[mm] $n^3 [/mm] = [mm] n*n^2 [/mm] > [mm] 7*n^2$ [/mm]
Jetzt teil mal auf beiden Seiten durch [mm] $n^2$ [/mm] ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]